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Abstract

T
HIS document is focussed on the development of reconstructed discontinuous

Galerkin (RDG
PnPm

) method, based on orthogonal basis functions. Orthogo-

nality of basis functions is essential for enabling robust and efficient fully-implicit

Newton-Krylov based time discretization. The method is designed for generic

partial differential equations, including transient hyperbolic, parabolic and/or el-

liptic operators, which are attributed to many multiphysics problems. Our driv-

ing application of interest is additive manufacturing, which requires simulations

of fluid-solid-gas systems, with compressibility effects and phase change (melt-

ing/solidification). Thus, we demonstrate the method capabilities for solving non-

linear heat conduction equation coupled with multi-material Navier-Stokes based

compressible fluid (in low Mach number limit) systems. We focus our attention

to the method accuracy (in both time and space), as well as solvability of lin-

ear algebra involved in linear steps of the Newton-based solver. We demonstrate

the accuracy and efficacy of the method, emphasizing the advantages from the

orthogonality of basis functions, which makes better conditioning of underlying

(approximate) Jacobian matrices, and rapid convergence of Krylov methods.
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Chapter 1

Introduction

I
N this document, we summarize the development of fully-implicit solution al-

gorithm, based on the Reconstructed Discontinuous Galerkin (RDG) method.

The main technical contribution is the use of orthogonal basis functions, which is

aimed at better conditioning of linear steps during the Newton-based non-linear

iterative procedure. In addition, we demonstrated an ability to solve for primi-

tive variables, chosen on the requirement of solvability (better conditioning) of

the underlying physics. This is in contrast to our previous RDG efforts ([LBL08],

[LBL06], [LLNM10b], [LLNC11], [LLN12], [LXL+12], [LXS+13], [XLFN14],

[XLN14] [LLNM09], [LLNM10c]), which was using conservation variables as a

solution vector. In the context of application of interest, we are looking at all-

speed flow capabilities, with phase change (melting/solidification), and the sets

of primitive variables ensuring solvability involve pressure, velocity and specific

internal energy/enthalpy/temperature. In this cases, the set of conservation vari-

ables (i.e., mass, momentum and total energy) is poorly conditioned and restrictive

in terms of feasible flow regimes (Mach number limitations).

The work is motivated by applications in Additive Manufacturing (AM), re-

quiring resolution of the laser-induced powder melting and formation of liquid

metal pools, with numerous numerically challenging issues. These include mod-

eling of liquid-solid interfaces, due to powder melting/solidification; gas-solid

and gas-liquid multi-material interfaces, with representation of ambient gaseous

media (air, Argon), using fully-compressible formulation; and complex interfacial

physics, including surface tension and Marangoni effects, adequate representation

of fluid-solid-gas contacts and wetting phenomena, etc. In this study, we will be

focusing on all-speed flow capabilities and an adequate modeling of phase change.

2
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To enable numerical resolution of all speed flow regimes, and stiffness associ-

ated with material strength models, covering both liquid (Newtonian fluid viscous

stress tensors) and solids (with appropriate stress deviators, plastic strain and other

constituitive models), we will be working with fully-implicit solvers, which are

based on tight coupling of all involved physics. While we are interested in re-

solving slow dynamic time scales of the process (mostly at the material velocity

time scale), fast (stiff) time scales due to acoustics and material strength are also

properly accounted for.

We will capitalize on recent development inL-stable time integrators [BCVK02,

CKB+05] and Newton based multiphysics algorithms [KK04], which is in con-

trast to Picard iteration based fully-implicit solution algorithms1 [PS72, Pat80],

[Iss85, OI01], currently widely used in commercial fluid dynamics codes, such as

CFX, STAR-CCM+, Fluent, etc., and many research and open-source codes, such

as e.g. OpenFoam.

For space discretization, we will use recently developed Reconstructed Dis-

continuous Galerkin method, which is shown to be highly attractive approach for

high-order numerical discretization of multi-physics problems ([LBL08], [LBL06],

[LLNM10b], [LLNC11], [LLN12], [LXL+12], [LXS+13], [XLFN14], [XLN14]

[LLNM09], [LLNM10c]). Our emphasis here is placed on making the RDG to

robustly work within the fully-implicit framework, especially at the regimes when

the underlying linear algebra is highly stiff. For this purpose, we choose to op-

erate with orthogonal basis functions, which supports better conditioning of time

discretizators. To ensure orthogonality, we use modal DG with Legendre based

tensor-product basis functions. In addition, we modify test functions, by inverse-

Jacobian weighting the basis functions, which places the method within the gen-

eral class of Petrov-Galerkin formulations. Thus constructed RDG has numer-

ous attractive features. Beside orthogonality, the method is hierarchical, which

enables natural compatibility with p-refinement. The method inherits all advan-

1It is instructive to note that we are excluding from the consideration operator-splitting meth-

ods, such as projection methods [Cho68], [Kan86], [BCG89], [Gre90, GC90, GCCH95, GC96],

[ABCH93, ABS96, ABC00], [Rid94b, Rid94a, RKM+95, Rid95], [Min96], [GQ97], [PAB+97],

[SAB+99], [KNW99], [BM95, MB97], [Wet98], [Gue96, Gue97], [GQ98b, GQ98a], [ABC00];

and “Implicit Continuous-fluid Eulerian (ICE)” algorithm, [HA68, HA71, HA75b, HA75a]).

These methods are very successful in simulation of relatively simple fluid dynamics, but are con-

sidered not robust enough for application of interest in the present study.
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tages from the original RDG, including easy implementation on hybrid meshes

and an ability to work naturally with AMR. Since the base (zeroth-order) degrees

of freedom are cell-average quantities, the method should be viewed as DG-based

extension of the second-order finite-volume (FV) algorithm, to enable high-order

(> 2nd) discretization on unstructured hybrid meshes, without extension of the

stencil. In fact, the stencil of the RDG is exactly the same as in the second-order

finite-volume methods, which are used in most commercial CFD packages. Close

relationship with FV is very attractive for CFD practitioners, as most currently

successful CFD codes are based on FV framework.

The method is implemented and tested within the LLNL’s ALE3D code [ale13,

ALE14]. ALE3D is a multi-physics numerical simulation software tool utilizing

arbitrary Lagrangian-Eulerian (ALE) techniques. The code is written to address

two-dimensional (2D) and three-dimensional (3D) physics and engineering prob-

lems using a hybrid finite element and finite volume formulation on an unstruc-

tured grid. The ALE and mesh relaxation capabilities broadens the scope of ap-

plications in comparison to tools restricted to Lagrangian-only or Eulerian-only

approaches, while maintaining accuracy and efficiency for large, multi-physics

and complex geometry simulations. Beyond its foundation as a hydrodynamics

and structures code, ALE3D has multi-physics capabilities that integrate various

packages through an operator-splitting approach. Additional ALE3D features in-

clude heat conduction, chemical kinetics and species diffusion, incompressible

flow, a wide range of material models, chemistry models, multi-phase flow, and

magneto-hydridynamics for long (implicit) and short (explicit) time-scale appli-

cations.

The rest of this document is organized as following. We start with the descrip-

tion of governing equations, in Chapter 2. RDG with orthogonal basis functions is

introduced in Chapter 3. Fully-implicit time discretization and related algorithms

(Newton-Krylov solver, preconditioning) are discussed in Chapter 4. Extensive

numerical testing of the method is performed in Chapter 5, which includes dis-

cussion of m-consistency, Section 5.1, convergence study in both time and space,

for non-linear heat conduction and fluid dynamics solvers, Sections 5.2 and 5.5,

mesh imprint effects, Section 5.3, modeling of phase change, Section 5.4, and

modeling of flows with vortical structures, Sections 5.6 and 5.7. Finally, conclud-

ing remarks are given in Chapter 6.
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Chapter 2

Governing Equations

I
N this chapter, we present the governing equations for applications of interest.

These equations can be written in the following abstract form:

∂U

∂t
+

∂

∂x
j

(
F

j
−D

j

)
= S (2.1)

where t, x = x
j
= (x, y, z), U, F, D and S are time, Cartesian coordinates,

the vectors of conservative variables, hyperbolic flux, diffusion flux and source

vectors, correspondingly. We also introduce a vector of “primitive” variables,

V, which is generally different from U, and chosen based on the “better system

conditioning” considerations.

2.1 Heat Conduction Model

2.1.1 Conservation of energy

Heat conduction model is based on the conservation of total energy,

U = [E] (2.2)

E = ρe

e = u+ v2

2

(2.3)

where E, e, ρ, u and v = v
j
= (u, v, w) are the total energy, specific total energy,

density, specific internal energy and material velocity vector, respectively.

6
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Hyperbolic flux is defined as

F
j
=
[
v
j
(E + P )

]
(2.4)

where P is thermodynamic pressure.

Diffusion flux is

D
j
=
[
−q

j
+ v

k
τ
jk

]
(2.5)

where q
j

and τ
jk

are heat flux vector and viscous stress tensor, respectively.

Finally, we consider energy source terms due to volumetric heat source, q′′′,
and body force, f

j
,

S =
[
q′′′ + v

j
f
j

]
(2.6)

2.1.2 Internal energy formulation

The first option for primitive solution variable is the specific internal energy

V = [u] (2.7)

The energy equation can be re-written as

∂

∂t
(ρu) +

✟✟✟✟✟✟✟✯0
∂

∂x
j

(
ρuv

j

)
= − ∂q

j

∂x
j

−
�

�
�
�✒
0

P
∂v

j

∂x
j

+
✚
✚
✚
✚❃
0

τ
kj

∂v
k

∂xj
+ q′′′ (2.8)

where we ignored material motion, body forces and stress tensor heating effects.

Thus, heat conduction model is defined as:

U = [ρu]

V = [u]

F
j

= [0]

D
j

=
[
q
j

]

S = [q′′′]

(2.9)

where density ρ is constant.
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2.1.3 Enthalpy formulation

The second option for the primitive solution variable is the specific enthalpy

V = [h] (2.10)

defined as

h = u+
P

ρ
(2.11)

We generally allow pressure to be a function of time,

P = P (t)

With these, heat conduction model is defined as:

U = [ρh− P ]

V = [h]

F
j

= [0]

D
j

=
[
q
j

]

S = [q′′′]

(2.12)

2.1.4 Temperature formulation

The final option for the primitive solution variable is temperature

V = [T ] (2.13)

defined as

T =
∂u

∂s

∣
∣
∣
∣
ρ

(2.14)

or

T =
∂h

∂s

∣
∣
∣
∣
P

(2.15)
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where s is specific entropy. We will consider thermally perfect materials,

u = u (T )

and

h = h (T )

Thus,

u (T ) = u0 + C̃v (T ) (T − T0) (2.16)

where T0 and u0 are some reference constants.

Specific heats are defined as

Cv (T ) =
∂u

∂T

∣
∣
∣
∣
ρ

= C̃v (T ) +
∂C̃v

∂T
T (2.17)

and

C
p
(T ) =

∂h

∂T

∣
∣
∣
∣
P

= C
v
(T )− P

ρ
2

∂ρ

∂T
(2.18)

(see Section C.1), which are generally functions of temperature.

With these, heat conduction model is defined as:

U = [ρu]

V = [T ]

F
j

= [0]

D
j

=
[
q
j

]

S = [q′′′]

(2.19)

2.1.5 Heat flux

For heat flux, we will use Fourier law, defined as

q
j
= −κ ∂T

∂x
j

(2.20)
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T

u

TL

TS

uS uL

uf

Solid LiquidPhase change

T(S)(u)

T(L)(u)

Fig. 2.1 : On melting/solidification modeling.

where κ is thermal conductivity coefficient, which is in general a function of tem-

perature,

κ = κ (T )

2.1.6 Modeling phase change (melting/solidification)

To represent phase change due to melting/solidification, we extend the thermally

perfect material model as explained in Figure 2.1. Three material state zones are

introduced.

I. Solid.

T < T
S
, u < u

S

where T
S

and u
S

are solidus temperature and specific internal energy, re-
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spectively. Material properties are

u
(S)

(T ) = u0 + C̃v(S)
(T ) (T − T0)

Cv(S)
(T ) =

∂u
(S)

∂T

∣
∣
∣
ρ

= C̃v(S)
(T ) +

∂C̃v(S)

∂T
T

κ
(S)

(T ) = κ (T )

ρ
(S)

= const

(2.21)

II. Liquid.

T > T
L
, u > u

L

where T
L

and u
L

are liquidus temperature and specific internal energy, re-

spectively. Material properties are modeled as

u
(L)

(T ) = u
L
+ C̃v(L)

(T ) (T − T
L
)

C
v(L)

(T ) =
∂u

(L)

∂T

∣
∣
∣
ρ

= C̃
v(L)

(T ) +
∂C̃v(L)

∂T
T

κ
(L)

(T ) = κ (T )

ρ
(L)

= const

(2.22)

III. Two-phase.

T
S
≤ T ≤ T

L
, u

S
≤ u ≤ u

L

We define latent heat as

u
f
= u

L
− u

S
(2.23)

Material properties in two-phase zone are defined by

T
2φ
(u) = T

S
+ x (T

L
− T

S
)

ρ
2φ
(u) = ρ

(S)
+ x

(

ρ
(L)

− ρ
(S)

)

Cv
2φ

(u) = Cv
(S)

(T
S
) + x

(

Cv
(L)

(T
L
)− Cv

(S)
(T

S
)
)

κ
2φ
(u) = κ

(S)
(T

S
) + x

(

κ
(L)

(T
L
)− κ

(S)
(T

S
)
)

(2.24)

where thermodynamic quality is defined as

x =
u− u

S

u
L
− u

S

(2.25)
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While most pure materials have T
S
= T

L
, we always allow some small dif-

ference, to enable physical thickness for melting front capturing (by smear-

ing jumps in specific energy due to latent heat), thereby eliminating numeri-

cal degeneracy/oscillations when computing heat transfer across two-phase

zone.

2.1.7 Dimensionless form

To dimensionalize energy equation (2.8), we define following scaling parameters:

ρ̄, T̄ , L̄, t̄, and C̄v (2.26)

for density, temperature, length, time and heat capacity, correspondingly. With

these, thermal conductivity scale is

κ̄ =
ρ̄C̄

v
L̄

2

t̄
(2.27)

specific internal energy scale is

ū = C̄v T̄ (2.28)

and dimensionless variables/parameters of the model are

T̂ = T
T̄

û = u
ū

ĥ = h

ū
ρ̂ = ρ

ρ̄

κ̂ = κ
κ̄

Ĉv = Cv

C̄v

Ĉ
p

=
Cp

C̄v
x̂ = x

L̄

t̂ = t
t̄

(2.29)

In conjunction with phase change problems (Section 2.1.6), it is useful to in-

troduce Stefan number as

Ste =
C̄

v
∆T

ū
f

(2.30)

where ∆T is some characteristic temperature difference.



2.2. NAVIER-STOKES EQUATIONS 13

2.2 Navier-Stokes Equations

2.2.1 [ρmE]-formulation

The governing equations of fluid dynamics are based on the conservation of mass,

linear momentum and total energy,

U =









ρ

ρu

ρv

ρw

E









(2.31)

The vector of hyperbolic fluxes is defined as

F
j
=









ρv
j

ρv
j
u+ Pδ

1j

ρv
j
v + Pδ

2j

ρv
j
w + Pδ

3j

ρv
j
e + v

j
P









(2.32)

The vector of diffusion fluxes is defined as

D
j
=









0
τ
1j

τ
2j

τ
3j

−q
j
+ v

k
τ
jk









(2.33)

while the source vector is

S =









m′′′

f1

f2

f3

q′′′ + f
k
v
k









(2.34)

where m′′′, f and q′′′ are volumetric mass source, body force, and volumetric en-

ergy source, respectively.

This constitutes conservative, or [ρmE]-formulation (stands for mass, ρ, mo-

mentum, m = ρv, and energy, E),

V = U
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2.2.2 Constitutive physics

To close the model, we need to define constitutive relations for viscous stresses

τ
ij

, heat flux q
j
, and pressure P (thermodynamics).

Viscous stress

Without loss of generality, we will consider here Newtonian fluids, for which

viscous stress tensor is defined as [Ari, LL88]

τ
ij
= 2µS

ij
+

(

ς − 2

3
µ

)

︸ ︷︷ ︸

λ

∂
k
v
k
δ
ij

(2.35)

where µ, ς and λ are the first, the second and bulk viscosity coefficients, respec-

tively. The strain tensor is defined as

S
ij
=

1

2

(
∂v

i

∂x
j

+
∂v

j

∂x
i

)

(2.36)

Following Stokes, the bulk and second viscosities are

λ = −2

3
µ

and

ς = 0

respectively, [Ari].

Heat flux

Without loosing generality, we will use Fourier law, as discussed in Section 2.1.5.

Equations of state

The final constituitive relationship is due to equation of state, defining

ρ = ρ (P, u)
T = T (P, u)

(2.37)
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in either analytical or tabular form. Basics of related thermodynamics is summa-

rized in Appendix C.

γ-law gas. One of the simplest compressible fluid equation of state is

P (ρ, u) = ρ(γ − 1) (u− u0 + CvT0)− γΠ0 (2.38)

known as γ-law gas. Parameters γ =
C

P

Cv
, u0 , T0 , Π0 and Cv are given constants

(Section C.5). This EOS is appropriate for many gases in a wide range of condi-

tions, such as Helium, Argon, and Air. With stiffening term γΠ
0
, this equation of

state can be used for liquids and solids under shocking conditions.

2-parameter fluid. Another simple fluid equation of state is

P (ρ) = P0 + ρc2 (2.39)

where P0 and c are reference pressure and constant sound speed (Section C.6), re-

spectively. We use this equation of state to represent nearly-incompressible fluids.

Incompressible fluid. Equation of state for incompressible fluids is

ρ = const (2.40)

Therefore, thermodynamic pressure is undefined. Instead, only the gradient of the

dynamic pressure ∇P̄ is of relevance, which comes out as a product of the cou-

pled solutions for mass and momentum equations.

For thermal energy, we utilize the concept of thermally perfect gases, i.e.

u(T ) = u0 + Cv (T ) (T − T0) (2.41)

where u0 and T0 are some reference constants. This implies that unless viscosity

and mass/momentum sources are temperature dependent, the energy equation is

decoupled from mass and momentum conservation equations.

2.2.3 [Pvu]-formulation

Conservative formulation in Section 2.2.1 is an excellent choice for high-speed

flows, when shock wave dynamics is the dominating physics. For low-speed
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flows and stiff fluids however, using conservative variables as a solution vector

is detrimental for solvability of discretized equations. In particular, consider the

following linearization of density around a state (P0, u0)

ρ (P, u) ≈ ∂ρ

∂P

∣
∣
∣
∣
u

(P − P0) +
∂ρ

∂u

∣
∣
∣
∣
P

(u− u0)

For stiff fluids (such as water or liquid metals), ∂ρ

∂P

∣
∣
u

and ∂ρ

∂u

∣
∣
P

are huge numbers,

∼ 106. Thus, small variations of density in low-Mach regimes ρ ≈ const cause

large variations of pressure and internal energy. On the other hand, density is

rather weakly sensitive (or even completely insensitive in the incompressible limit

M → 0) to both P and u. This leads to degenerate (ill-conditioned) Jacobian

matrices for underlying linear algebra.

Similarly, total energy is a poor choise for low-speed flow regime, because it

is very weakly dependent on kinetic energy,

v2

2
≪ u

One of the great strengthes of the non-linear Newton-Krylov algorithm we are

using (Section 4.2) is that it does not require to solve for conservative variables.

Instead, we should choose solution variables which makes solution at linear steps

better conditioned.

The first option is solving for pressure (P ), velocity (v) and specific internal

energy (u), referred to as [Pvu]-formulation. Thus,

V =









P

u

v

w

u









(2.42)

While replacing momentum vector m by velocity vector v does not impact sig-

nificantly solvability of linear algebra, velocity is more natural (convenient, prim-

itive) variable, offering some advantages in initialization and boundary condition

treatments.
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2.2.4 [Pvh]-formulation

Another useful primitive variable set is [Pvh],

V =









P

u

v

w

h









(2.43)

Using specific enthalpy h instead of specific internal energy u is advantageous for

applications with phase change (see discussion in Section 2.3), as it is directly

related to latent heat r:

r
LS

= h
L
− h

S
(2.44)

for melting/solification, and

r
lv
= h

l
− hv (2.45)

for evaporation/condensation. In eqs.(2.44) and (2.45), h
S
, h

L
, h

l
and hv are satu-

ration specific enthalpies at solid, liquid and vapour states, respectively.

2.2.5 [PvT ]-formulation

Our final choise for the solution vector is [PvT ]

V =









P

u

v

w

T









(2.46)

Temperature is a convenient natural (primitive) variable, which is usefull when

setting initial and boundary conditions.

2.2.6 Simplifications

Boussinesq approximation for buoyancy

In fully-compressible formulation, the gravity term is usually represented as

f = ρg
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where g is a gravity vector. In the nearly-incompressible limit, this term can be

replaced by Boussinesq approximation,

f = ρ0gβ (T − T0) (2.47)

where ρ0 and T0 are reference density and temperature, while β is the given coef-

ficient of thermal expansion.

Energy conservation

Another simplification can be made in the limit of (nearly-) incompressible fluids,

in which we can solved for conservation of internal energy,

U =









ρ

ρu

ρv

ρw

u









(2.48)

F
j
=









ρv
j

ρv
j
u+ Pδ

1j

ρv
j
v + Pδ

2j

ρv
j
w + Pδ

3j

ρv
j
u









(2.49)

D
j
=









0
τ
1j

τ
2j

τ
3j

−q
j









(2.50)

and

S =









m′′′

f1

f2

f3

q′′′









(2.51)
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Note that for the solution vector V, one can use either eq.(2.42), eq.(2.43) or

eq.(2.46). We usually use this energy conservation form in conjunction with the 2-

parameter fluid EOS, Section C.6, in the low Mach number (nearly-incompressible)

regime.

2.2.7 Dimensionless forms

To dimensionalize compressible Navier-Stokes equations, we have to define four

scaling parameters:

ρ̄, L̄,







P̄

v̄

f̄

t̄






, T̄ (2.52)

where we can chose either P̄ , v̄, f̄ or t̄, which will be denoted as pressure-,

velocity-, body-force- or time- scaling, correspondingly. The rest scaling parame-

ters can be derived from these chosen four, using

v̄ = L̄
t̄

P̄ = ρ̄v̄
2

µ̄ = L̄
2

ρ̄t̄

κ̄ = L̄ρ̄v̄
3

T̄
ū = v̄

2
= P̄

ρ̄
C̄v = v̄

2

T̄

f̄ = L̄

t̄
2 = v̄

2

L̄

(2.53)

Thus, dimensionless variables/parameters of the model are

P̂ = P
P̄

T̂ = T
T̄

v̂ = v
v̄

û = u
ū

ĥ = h

ū
ρ̂ = ρ

ρ̄

κ̂ = κ
κ̄

µ̂ = µ

µ̄
Ĉv = Cv

C̄v

Ĉ
p

=
Cp

C̄v
f̂ = f

f̄
x̂ = x

L̄

t̂ = t
t̄

(2.54)
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Reynolds number (velocity) scaling

Choosing velocity scale v̄, the governing equations can be written in the following

dimensionless form:

Mass conservation

∂
t̂
ρ̂+ ∂

ĵ

(
ρ̂v̂

j

)
= 0

(2.55)

Momentum conservation

∂
t̂
ρ̂v̂

i
+ ∂

ĵ

(

ρ̂v̂
i
v̂

j
+ P̂

)

= ∂
ĵ

(
1
Re
∂

ĵ
v̂

i

)

+ ρ̂f̂
i

(2.56)

and

Energy conservation

∂
t̂
ρ̂û+ ∂

ĵ

(
ρ̂ûv̂

j

)
= ∂

ĵ

(
1

RePr
∂

ĵ
T̂
)

(2.57)

where we defined the Reynolds and Prandtl numbers as

Re =
L̄v̄

ν̄
(2.58)

and

Pr =
ν̄

ᾱ
(2.59)

respectively. Kinematic viscosity and thermal diffusivity are

ν̄ =
µ̄

ρ̄

and

ᾱ =
κ̄

ρ̄C̄v

correspondingly.

Grashof number (buoyancy) scaling

Gravity scaling of governing equations is useful for natural convection flows. In

this case, velocity scale is defined as

v̄ =

√

ḡβ̄L̄∆T
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where

∆T = T − T
ref

Thus, momentum and energy conservation equations are

Momentum conservation

∂
t̂
ρ̂v̂

i
+ ∂

ĵ

(

ρ̂v̂
i
v̂

j
+ P̂

)

= ∂
ĵ

(
1√
Gr
∂

ĵ
v̂

i

)

+ ρ̂β̂∆T̂ ĝ
i

(2.60)

and

Energy conservation

∂
t̂
ρ̂û+ ∂

ĵ

(
ρ̂ûv̂

j

)
= ∂

ĵ

(
1√

GrPr
∂

ĵ
T̂
)

(2.61)

correspondingly. In these equations, we introduced the Grashof number, defined

as

Gr =
ḡβ̄∆T L̄3

ν̄2
=
v̄2L̄2

ν̄2
= Re2 (2.62)

Another useful dimensionless number is the Rayleigh number,

Ra =
ḡβ̄∆T L̄3

ν̄ᾱ
= Gr Pr (2.63)

2.3 Fluid-Solid Multiphase Flows

2.3.1 Latent heat

To represent phase change within the scope of the thermal Navier-Stokes equa-

tions (2.1) and (2.48)-(2.51), we use an energy-based (homogeneous thermal equi-

librium) approach. Latent heat is incorporated into the thermal model u (T ), as

described in Section 2.1.6. As the materials of practical interests for AM are

alloys, we always have a transitional two-phase region, between solidus and liq-

uidus. Thermal conductivity in this transitional region is represented as

κ (u) =







κ
S

if u < u
S

κ
L
+

κ
S
−κ

L

2
(1 + cos (xπ)) if u

S
≤ u ≤ u

L

κ
L

otherwise

(2.64)

where κ
L

, κ
S

and x are the thermal conductivity of liquid, the thermal conductiv-

ity of solid, and thermodynamic quality, respectively.

To model the strength of the solid material, in both solid state and transitional

two-phase “mushy” region, a number of approaches are available.
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2.3.2 Darcy law approach

Voller and Prakash [VP87] used the following Darcy law approach in the “mushy”

zone. Darcy law is defined as

v = −K
µ
∇P (2.65)

where K is the permeability, being modeled as a function of porosity λ. Within

the scope of the present study, the porosity can be approximated as

λ = 1− φs = x

where φs is the local solid fraction, while x is the thermodynamic quality, eq.(2.25).

As the porosity decreases, both the permeability and the superficial velocity di-

minish as well, down to the limiting value of zero, at the completely solid state.

Within the V&P model, this behavior can be represented by adding the following

body forces to momentum equations:

f
D
= Av (2.66)

where A increases from zero to a very large number as the local solid fraction

varies from 0 (in liquid state) to 1 (in completely solid state). In [VP87], it is

modeled as

A = −C (1− λ)2

λ3 + ǫ
(2.67)

based on the Carman-Kozeny equation. The value C depends on the morphology

of the porous media. In [VP87], it was set to 1.6 · 103. Parameter ǫ is introduced

to avoid division by zero, and it was set to 10−3.

From the point of view numerics, this model introduces a strong source-term

coupling of energy and momentum equations, akin to the Boussinesq gravity term.

This requires an algorithm which enables tight coupling of momentum and en-

ergy equations. SIMPLE-like algorithms (like those used in [VP87]) are usually

organized with outer Picard iterations, to account for this non-linear coupling.

In [DBNS96], we used this model implemented in the commercial CFD pack-

age CFX (currently, a part of ANSYS). To keep non-disconverging solutions for

internally-heated melt pools, we needed to employ hundreds of outer (Picard) it-

erations.
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Fig. 2.2 : An example of viscosity factor, as a function of temperature.

2.3.3 Viscosity-based approach

In the present study, we use the following empirical viscosity-based model. Mate-

rial strength is represented as a linear function of strain tensor. Thus, it is a simple

extension of the viscous stress tensor in fluid, where the viscosity is set to be a

function of the specific internal energy (or temperature). We use the following

functional form for dynamic viscosity:

µ (T ) =







µ⋆
S

if T < T
⋆

µ
L
f
µ
(T ) if T

⋆ ≤ T ≤ T
L

µ
L

otherwise

(2.68)

where f
µ
(T ) is the viscosity factor, smoothly varied from 1 to a large number,

µ⋆
S

µ
L

,

in the range of temperatures from liquidus T
L

down to T
⋆

. This model enables

a smooth transition of the effective viscosity of the media from the dynamic vis-

cosity of liquid (µ
L

) to the very large “solid-state” viscosity (µ⋆
S
), which inhibits

material deformation. In the present study, we defined the viscosity factor as

fµ (T ) = 10
ϕ(T )

(2.69)
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where

ϕ (T ) = − (a0 − 4a1)ψ (T ) + 2 (a0 − 2a1)ψ (T )
2

(2.70)

ψ (T ) =
1

2
(1 + cos (πy (T ))) (2.71)

y (T ) = b0 + b1 T̂ + b2 T̂
2 (2.72)

a0 = log10 (αfS
) and a1 = log10 (fS

) (2.73)

b0 =
T̂

⋆
(T̂L(T̂

⋆−T̂
L)−2T̂

S(T̂
⋆−T̂

S))
d

b1 =
T̂

2

⋆
+T̂

2

L
−2T̂

2

S

d

b2 = − T̂
⋆
+T̂

L−2T̂
S

d

d = 2
(

T̂
⋆ − T̂

L
)(

T̂
⋆ − T̂

S
)(

T̂
L − T̂

S
)

T̂
⋆

= T̂
L − ω

(

T̂
L − T̂

S
)

(2.74)

and temperature T̂ is dimensionalized as described in eq.(2.54). There are three

input parameters for this model, i.e. f
S

(viscosity factor at solidus), α (defining

the limiting “solid-state” viscosity as µ
⋆

S
= αf

S
µ

L
) and ω (defining the thickness

of the “creeping solid” state). An example of the fµ (T ) for T̂
L
= 1.5, T̂

S
= 1.4,

f
S
= 10

2
, α = 10 and ω = 2 is shown in Figure 2.2.

Similarly to the Darcy law based material strength, this model introduces a

strong coupling of energy and momentum equation. However, this non-linearity

is in the parabolic operator, which is rather difficult to treat numerically. We

demonstrate performance of our solver for this challenging non-linear coupling in

Section 5.10.
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Chapter 3

Space Discretization using

Orthogonal RDG

I
N this chapter, we describe our space discretization method. We start with a brief

introduction of the Discontinuous Galerkin (DG) method, Sections 3.1 and 3.2,

followed by the description of the recovery and reconstructed DG (RDG) meth-

ods, and then by the introduction of the RDG based on orthogonal basis functions,

in Section 3.4.

3.1 Method of Mean Weighted Residuals

We are concerned with the solution of general partial differential equations of

type eq.(2.1), using the Method of Mean Weighted Residuals (MWR) [Fle91].

The solution

U = U (t,x)

for equation (2.1) is assumed to be well approximated by a function of a particular

form having a finite set of degrees of freedom (DoFs),

U
i
, i = 0, ..., N − 1

where N is the total number of DoFs.

We are looking for minimization of the following residue function,

R

(

t,x,U,
∂U

∂t
,
∂U

∂x
j

, ...,
∂nU

∂xn
j

)

≡ ∂U

∂t
+

∂

∂x
j

(
F

j
−D

j

)
− S 0 (3.1)

26
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in order to find corresponding values of U
i
. Note, that, in general, residue function

is non-linear relative to U
i
.

Every method of mean weighted residuals involves some “basis” and “test”

functions that shall be denoted by W and B, respectively.

The method of mean weighted residuals solves

R

(

t,x,U,
∂U

∂t
,
∂U

∂x
j

, ...,
∂nU

∂xn
j

)

= 0

by imposing that the DoFs U
i

are such that

(

R

(

t,x,U,
∂U

∂t
,
∂U

∂x
j

, ...,
∂nU

∂xn
j

)

,W
i

)

= 0 (3.2)

are satisfied. The notion (f, g) is the standard function inner product.

The Galerkin method is a particular subclass of MWR, with test functions

being simple functions of basis functions,

W = W (B)

The most commonly used form is

W = B

The cases of B 6= W , are often referred to as Petrov-Galerkin methods.

3.2 Discontinuous Galerkin (DG)

Discontinuous Galerkin (DG) methods originate from the early work by Reed

and Hill [RH73] for the solution of neutron transport equations. In late 1980s, DG

evolved to solve fluid dynamics equations, [CS89, CLS89, CHS90, Coc89, Li05,

LBL08, LBL06].
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3.2.1 Formulation

DG methods are a particular sub-class of MWR methods, with piece-wise discon-

tinuous basis functions. We assumed that the computational domain Ω is subdi-

vided into a collection of non-overlapping elements, Ω
e
. Without loss of general-

ity, we will consider here linear QUAD4 (4-node) and HEX8 (8-node) elements1.

Next, let us introduce the following broken Sobolev space V
p

h

V
p

h
=
{

υ
h
∈ [L2 (Ω)]

m

: υ
h
|
Ωe

∈
[

Vm

p

]

∀Ωe ∈ Ω
}

(3.3)

which consists of discontinuous vector-values polynomial functions of degree p,

and where m is the dimension of the unknown vector and Vp is the space of all

polynomials of degree ≤ p. To formulate basic DG method, we introduce the

following weak formulation, which is obtained by multiplying eq.(2.1) by a test

function W
h
, integrating over an element Ω

e
, and then performing an integration

by parts,

R
h
(U

h
) = ∂

∂t

∫

Ωe

U
h
W

h
dΩ +

∫

Γe

(
F

j
(U

h
)−D

j
(U

h
)
)
n

j
W

h
dΓ−

−
∫

Ωe

[(
F

j
(U

h
)−D

j
(U

h
)
) ∂W

h

∂x
k

+ S (U
h
)W

h

]

dΩ, ∀W
h
∈ V

p

h

(3.4)

where U
h

and W
h

are represented by piecewise-polynomial functions of degrees

p, which are discontinuous between the cell interfaces, and n = n
j

denotes the

unit outward normal vector to the element face Γ
e

(i.e., the boundary of Ω
e
). This

formulation is called discontinuous Galerkin method of degree p, and denoted as

DG(Pp).

Since the numerical solution U
h

is discontinuous across element interfaces,

the numerical hyperbolic fluxes are not uniquely defined. The hyperbolic flux

function F
j
(U

h
)n

j
appearing in the face integral term of eq.(3.4) is replaced

by a numerical Riemann flux function, H
j

(

U
L

h
,U

R

h

)

n
j
, which is computed by

some (approximate) Riemann solver. Here, U
L

h
and U

R

h
are the conservative state

vectors at the left and right side of the element boundary. In this sense, discon-

tinuous Galerkin formulation is very similar to finite volume schemes. In fact,

1Extension to quadratic QUAD8 and HEX20 elements, as well as to triangle and tetrahedral

elements is straightforward.
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!"# $"# %"#

Fig. 3.1 : Representation of polynomial solutions using finite element shape func-

tions in nodal DG (a) and (b), and using Taylor based basis functions in modal

DG (c).

the classical first-order cell-centered finite volume scheme is exacly DG(P0) - i.e.

discontinuous Galerkin method using a piecewise-constant basis function. There-

fore, the DG(Pk) methods with k > 0 can be regarded as a natural generalization

of finite volume methods to higher order. By simply increasing the degree p of

the polynomials, the DG methods of corresponding higher order are obtained.

The domain and boundary integrals in eq.(3.4) are usually calculated using Gauss

quadrature formulas. The number of quadrature points used is chosen to integrate

exactly polynomials of (2p)th and (2p + 1)th order for volume and surface inner

products in the reference element.

3.2.2 Basis and test functions

In the most common form of DGM, numerical polynomial solutions U
h

in each

element are expressed using either standard Lagrange finite element or hierarchi-

cal node-based basis functions [Li05], as following

U
h
(x) =

K−1∑

k=0

U
(k)

e
(t)B

(k)
(x) (3.5)
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where B
(k)

are the finite element basis functions. Thus, the unknowns to be solved

for are the solution variables at the nodes of element, therefore the method is

called nodal DGM, Figure 3.1(a) and (b). Also, as in the classical Galerkin for-

mulation, the test functions coincide with the basis functions,

W
k
= B

k

In our previous work [LBL08], [LBL06], [LLNM10b], [LLNC11], [LLN12],

[LXL+12], [LXS+13], [XLFN14], [XLN14] [LLNM09], [LLNM10c], we uti-

lized Taylor-series-based basis functions, i.e., in 3D:

B (x) =







1,
x− xc

∆x
︸ ︷︷ ︸

B
(1)

,
y − yc

∆y
︸ ︷︷ ︸

B
(2)

,
z − zc
∆z
︸ ︷︷ ︸

B
(3)

,
B2

(1)

2
− 1

Ωe

∫

Ωe

B2
(1)

2
dΩ

︸ ︷︷ ︸

B
(4)

,

B2
(2)

2
− 1

Ωe

∫

Ωe

B2
(2)

2
dΩ

︸ ︷︷ ︸

B
(5)

,
B2

(3)

2
− 1

Ωe

∫

Ωe

B2
(3)

2
dΩ

︸ ︷︷ ︸

B
(6)

,

B
(1)
B

(2)
− 1

Ωe

∫

Ωe

B
(1)
B

(2)
dΩ

︸ ︷︷ ︸

B
(7)

, B
(1)
B

(3)
− 1

Ωe

∫

Ωe

B
(1)
B

(3)
dΩ

︸ ︷︷ ︸

B
(8)

,

B
(2)
B

(3)
− 1

Ωe

∫

Ωe

B
(2)
B

(3)
dΩ

︸ ︷︷ ︸

B
(7)

, . . .







(3.6)

where

∆x =
xmax − x

min

2
, ∆y =

ymax − y
min

2
and ∆z =

zmax − z
min

2

and xmax , x
min

, ymax , y
min

, zmax and z
min

are the maximum and minimum coordi-

nates in the cell Ωe in x-, y- and z-directions, respectively. This formulation is

called modal DGM, Figure 3.1(c), and it has a number of useful features:
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+ First, DoFs are functions of cell-averaged variables and their spatial deriva-

tives, which is very convenient for discretization of diffusion and parabolic

operators.

+ Second, these basic functions are hierarchical, which facilitates p-refinement.

+ Third, these basic functions decouple the solved for degrees of freedom

from the element geometry, i.e. the same basis functions can be used for

any shapes of elements: linear/quadratic tetrahedron, pyramid, prism and

hexahedron in 3D, and triangles or quads in 2D. This feature is particu-

larly important for implementation on arbitrary (hybrid) meshes, with h-

refinement.

+ Finally, the zeroth-order DoF is decoupled from the rest (higher order)

DoFs,
∫

Ωe

B
(0)
B

(k)
dΩ = 0, k > 0

and its evolution equation concides almost exactly with the cell-centered

finite volume formulation.

The obvious drawback of Taylor basis functions (as well as those used in nodal

DG) – they are not orthogonal. Thus, eq.(3.4) becomes

R
h
(U

h
) =







∂
∂t

∫

Ωe

U
(0)

e
dΩ+

∫

Γe

[
F

j
(U

h
)−D

j
(U

h
)
]
n

j
dΓ−

∫

Ωe

S (U
h
) dΩ

M
K×K

∂
∂t

∫

Ωe







U
(1)

e

U
(2)

e

. . .

U
(K)

e






dΩ+ S

K×1

(3.7)

with non-diagonal mass matrix M
K×K

, where K+1 is the total number of DoF per

element, per variable. This is rather damaging for condition number of high order

(p > 1) versions. This deficiency is especially evident when applied within the

fully-implicit time discretization context.
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3.3 Recontruction and Recovery DG

As discussed above, the discontinuous Galerkin method provides an elegant way

to build high-order space discretization on unstructured meshes by simply adding

additional degrees of freedom per element, per variable. This approach is com-

pact, i.e. DG(Pp) of any order p has the same stencil, which is very attractive

feature in terms of parallelization and code design. On the other hand, the size

of the solution vector is growing significantly, as more equations for DoFs must

be solved for. In particular, for modal DG in 2D – the size of the solution vector

for the second- DG(P1), the third- DG(P2) and the fourth-order DG(P3) schemes

are ×3, ×6 and ×10 times larger, respectively, as compared to the basic DG(P0)

finite volume method. This is even worse for 3D, i.e. ×4, ×10 and ×20 – for the

DG(P1), DG(P2) and DG(P3), correspondingly. Such an increase in the size of the

solution vector is unfavourable in the context of implicit solvers, imposing signif-

icant memory requirements (for storage of linear algebra matrices) and adversely

affecting solution scalability, as a majority of linear solvers do not scale linearly

[Saa03].

There is an alternative way to increase the order of accuracy, which is a routine

in finite volume methods. All practically used FV methods reconstruct in-cell

slopes of the solution vector by means of the solution reconstruction. This leads

to an increase of the stencil, which is a well-established acceptable strategy for the

second-order FV methods. However, going beyond the second order is impractical

for unstructured meshes, leading to significant complications in the code design.

3.3.1 Recovery based DG

In [NTP+08, NPM09], we explored the ideas of in-cell recovery to enhance the

order of accuracy for DG, without increasing the size of the solution vector. We

capitalized on the earlier work by van Leer and Nomura [vLN05], who suggested

to use recovery in order to consistently discretize diffusion operator within the DG

framework. In [vLN05], the DG’s piece-wise discontinuous representation of the

solution at the element interfaces was replaced by locally recovered underlying

smooth solution with sufficient fidelity, at the union of face-neighboring elements.

During the recovery, it is required that the solution is consistent with the under-

lying DG’s broken Sobolev space solution representation. We denote this type of

recovery as inter-cell recovery.



3.3. RECONTRUCTION AND RECOVERY DG 33

In [NTP+08], we noticed that similar strategy2 can be used for enhancing

in-cell solution representation, by considering an element and its local neighbors.

In 1D, this leads to a family of RDG
PnP3n+2

schemes. Combined with inter-cell re-

covery, the RDG
PnP3n+2

offers very usefull discretization framework for modeling

one-dimensional fluid flows, in nuclear safety system analysis codes [YNK+11].

Extending in-cell recovery to 2D regular meshes was explored in [NPM09].

We demonstrated feasibility of RDG
P1P5

for compressible Navier-Stokes and neu-

tron diffusion equations. However, using recovery on arbitrary meshes is imprac-

tical, as it requires involvement of vertex neighbours. More fruitful approach

was explored by Dumbster et al. [DBTM08, DZ09, Dum10], who utilized least-

squares recovery, to achieve higher order representation with DG methods. The

method is called PnPm – i.e., “solving for Pn” and “reconstructing to Pm” – a

convenient way to reflect what we attempt to achieve with in-cell recovery.

Inter-cell recovery [vLN05] was further developed in several studies by van

Leer, Lo and Raalte [vLLR07, vRvL08, vLL09, LvL09]. Of these, [LvL09] is

of particular significance, as it presents a proof of method’s global stability, by

considering energy decay in time. We will discuss inter-cell recovery in more

details in Section 3.4.

3.3.2 Reconstruction based DG

As we mentioned above, using recovery is not practical approach for increasing

the order of the DG method, on arbitrary unstructured meshes. In [LLNM09],

[LLNM10c], [LLNM10b], [LLNM10a], [LLNC11], [LLN12], [LXL+12],

[LXS+13], [XLFN14] and [XLN14], we utilized the least-squares based

reconstruction instead. In this approach, we increase the accuracy of the DG

method by one order, using only face-neighboring elements. This is an important

design requirement, necessary for feasibility of discretization on arbitrary (hybrid)

unstructured meshes. The distinguishable feature of this RDG
PnPn+1

method is

the use of strong statements, in difference to weak (integral) statements of the re-

covery schemes. This strategy greatly simplifies the algorithm, and it is along the

lines of what is traditionally used for reconstruction with finite volume methods.

In fact, the RDG
P0P1

is exactly what is known as the least-squares based finite vol-

2It is instructive to note that similar recovery strategy was used by Qui and Shu [QS03], but in

different context, building WENO limiters for DG.



34 CHAPTER 3. SPACE DISCRETIZATION USING ORTHOGONAL RDG

ume method [BJ89]. The RDG
PnPn+1

is designed to work with modal DG, capi-

talizing on the availability of the solution derivatives at element centers. Thus, the

in-cell higher order DoFs are reconstructed hierarchically, on the top of the solved-

for DoFs, with the requirement to be consistent with cell-centered solutions (and

all available solved for derivatives) in all face-neighboring elements, satisfied in

the least-squares sense. The method is constructed in conjunction with the inter-

cell reconstruction, which considers all unions of face-neighboring elements, and

imposes integral consistency of the face-centered reconstructed solution for cell-

averaged quantities, and least-squares based strong statements for solved-for cell-

centered solutions and all available derivatives. This combination of in-cell and

inter-cell reconstructions provides a flexible discretization framework for generic

PDEs of type eq.(2.1), which includes transient hyperbolic, parabolic or elliptic

operators. Implementation of the solution limiting, necessary for shock dynamics

and multi-material applications, is done within the hierarchical WENO concept,

as demostrated in [LXL+12, LXS+13, XLN14].

It must be noted that the reconstructed RDG
PnPn+1

suffers from the same non-

orthogonality issue, as its base modal DG – i.e., the mass matrix is non-diagonal.

In the following sections, we describe the RDG
PnPn+1

based on orthogonal basis

functions, as well as other practical implementation issues when building upon

the Newton-Krylov based fully-implicit solution strategy.

3.4 RDG with orthogonal basis functions

Without loss of generality, we will consider the 4-node linear QUAD4 and the

8-node linear HEX8 elements, Figure 3.2, as required by the application code of

interest.

3.4.1 Isoparametric mapping

The canonical shape functions are

φ0 (ξ, η) = 1
4 (1− ξ) (1− η) φ1 (ξ, η) = 1

4 (1 + ξ) (1− η)

φ2 (ξ, η) = 1
4 (1 + ξ) (1 + η) φ3 (ξ, η) = 1

4 (1− ξ) (1 + η)
(3.8)
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for QUAD4 elements, and

φ
0
(ξ, η, ζ) = 1

8
(1− ξ) (1− η) (1− ζ) φ

1
(ξ, η, ζ) = 1

8
(1 + ξ) (1− η) (1− ζ)

φ2 (ξ, η, ζ) =
1

8
(1 + ξ) (1 + η) (1− ζ) φ3 (ξ, η, ζ) =

1

8
(1− ξ) (1 + η) (1− ζ)

(3.9)

φ4 (ξ, η, ζ) =
1

8
(1− ξ) (1− η) (1 + ζ) φ5 (ξ, η, ζ) =

1

8
(1 + ξ) (1− η) (1 + ζ)

φ
6
(ξ, η, ζ) = 1

8
(1 + ξ) (1 + η) (1 + ζ) φ

7
(ξ, η, ζ) = 1

8
(1− ξ) (1 + η) (1 + ζ)

for HEX8 elements. These functions are used for isoparametric mapping from the

physical space x = (x, y, z) to the reference space χ = (ξ, η, ζ), Figure 3.2:







x (ξ, η) =
3∑

n=0

x
n
φ

n
(ξ, η)

y (ξ, η) =
3∑

n=0

y
n
φ

n
(ξ, η)

(3.10)

for QUAD4, and







x (ξ, η, ζ) =
7∑

n=0

xnφn (ξ, η, ζ)

y (ξ, η, ζ) =
7∑

n=0

ynφn (ξ, η, ζ)

z (ξ, η, ζ) =
7∑

n=0

znφn (ξ, η, ζ)

(3.11)

for HEX8 elements.

The Jacobians of transformations J are defined by

[
dx

dy

]

=

[
x

ξ
x

η

y
ξ

yη

]

︸ ︷︷ ︸

J

[
dξ

dη

]

(3.12)

for 2D, and





dx

dy

dz



 =





x
ξ
xη x

ζ

y
ξ

yη y
ζ

z
ξ

z
η

z
ζ





︸ ︷︷ ︸

J





dξ

dη

dζ



 (3.13)
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Fig. 3.2 : Element topology and isoparametric mapping for linear QUAD4 (top)

and HEX8 (bottom) elements.
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for 3D elements. Inverse of the Jacobian matrix is defined as

J
−1

=

[
ξ
x

ξ
y

ηx ηy

]

(3.14)

in 2D, and

J
−1

=





ξx ξy ξz
ηx ηy ηz

ζ
x

ζ
y

ζ
z



 (3.15)

in 3D. All these element’s geometrical parameters, as well as |J| and partials

∂J
−1

∂χ
i

, and
∂2J

−1

∂χ
i
χ

j

where

χ = (ξ, η, ζ)

are needed for the high-order discretization over elements, and they can be com-

puted from the nodal coordinates.

3.4.2 Integration

Domain integrals of a function f (x) are computed using Gauss quadrature for-

mulas, as

∫∫

Ωe

f (x) dΩ =
1∫

−1

1∫

−1

f (x (χ) , y (χ))

∣
∣
∣
∣

∂ (x, y)

∂ (ξ, η)

∣
∣
∣
∣

︸ ︷︷ ︸

|J|

dξ dη =

=
Ng∑

g=0

ωgfg |J|

(3.16)

for QUAD, and

∫∫∫

Ωe

f (x) dΩ =
1∫

−1

1∫

−1

1∫

−1

f (x (χ) , y (χ) , z (χ))

∣
∣
∣
∣

∂ (x, y, z)

∂ (ξ, η, ζ)

∣
∣
∣
∣

︸ ︷︷ ︸

|J|

dξ dη dζ =

=
Ng∑

g=0

ωgfg |J|

(3.17)

for HEX elements, where Ng, ωg , fg and |J| are the total number of Gaussian

integration points, the weight of gth integration point, the function evaluated at

the gth integration point, and the determinant of the Jacobian matrix, respectively.



38 CHAPTER 3. SPACE DISCRETIZATION USING ORTHOGONAL RDG

3.4.3 Basis and test functions

For QUAD elements, we use the following Legendre-polynomials-based basis

functions:

B (ξ, η) =







1, L
(1)

(ξ)
︸ ︷︷ ︸

B
(1)

, L
(1)

(η)
︸ ︷︷ ︸

B
(2)

, L
(2)

(ξ)
︸ ︷︷ ︸

B
(3)

, L
(1)

(ξ)L
(1)

(η)
︸ ︷︷ ︸

B
(4)

, L
(2)

(η)
︸ ︷︷ ︸

B
(5)

,

L
(3)

(ξ)
︸ ︷︷ ︸

B
(6)

, L
(2)

(ξ)L
(1)

(η)
︸ ︷︷ ︸

B
(7)

, L
(1)

(ξ)L
(2)

(η)
︸ ︷︷ ︸

B
(8)

, L
(3)

(η)
︸ ︷︷ ︸

B
(9)

, . . .







(3.18)

and

U (ξ, η) =

K−1∑

k=0

U
(k)
B

(k)
(ξ, η) (3.19)

For HEX elements, the basis functions are defined as:

B (ξ, η, ζ) =







1, L
(1)

(ξ)
︸ ︷︷ ︸

B
(1)

, L
(1)

(η)
︸ ︷︷ ︸

B
(2)

, L
(1)

(ζ)
︸ ︷︷ ︸

B
(3)

, L
(2)

(ξ)
︸ ︷︷ ︸

B
(4)

, L
(2)

(η)
︸ ︷︷ ︸

B
(5)

, L
(2)

(ζ)
︸ ︷︷ ︸

B
(6)

,

L
(1)

(ξ)L
(1)

(η)
︸ ︷︷ ︸

B
(7)

, L
(1)

(ξ)L
(1)

(ζ)
︸ ︷︷ ︸

B
(8)

, L
(1)

(η)L
(1)

(ζ)
︸ ︷︷ ︸

B
(9)

,

L
(3)

(ξ)
︸ ︷︷ ︸

B
(10)

, L
(3)

(η)
︸ ︷︷ ︸

B
(11)

, L
(3)

(ζ)
︸ ︷︷ ︸

B
(12)

, L
(1)

(ξ)L
(1)

(η)L
(1)

(ζ)
︸ ︷︷ ︸

B
(13)

,

L
(2)

(ξ)L
(1)

(η)
︸ ︷︷ ︸

B
(14)

, L
(1)

(ξ)L
(2)

(η)
︸ ︷︷ ︸

B
(15)

, L
(2)

(ξ)L
(1)

(ζ)
︸ ︷︷ ︸

B
(16)

,

L
(1)

(ξ)L
(2)

(ζ)
︸ ︷︷ ︸

B
(17)

, L
(2)

(η)L
(1)

(ζ)
︸ ︷︷ ︸

B
(18)

, L
(1)

(η)L
(2)

(ζ)
︸ ︷︷ ︸

B
(19)

, . . .







(3.20)

and

U (ξ, η, ζ) =
K−1∑

k=0

U
(k)
B

(k)
(ξ, η, ζ) (3.21)
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It is instructive to note that, in this formulation, the first degree of freedom is the

cell-averaged quantity, similar to the Taylor basis functions formulation. Thus,

this is a natural extension of the finite-volume method to high orders.

In eqs.(3.18) and (3.20), L
(n)

(x) are the Legendre polynomials of the order n,

which can be expressed by simple monomials with multiplicative formula of the

binomial coefficient:

L
(n)

(x) = 2
n ·

n∑

k=0

x
k

(
n

k

)(
n+k−1

2

n

)

(3.22)

where the binomial coefficients can be computed by

(
m

j

)

=

j
∏

i=1

m+ 1− i

i
(3.23)

The test functions are defined as

W
(n)

=
B

(n)

|J| (3.24)

Importantly, the basis functions eqs.(3.18) and (3.20) are orthogonal relative to

the test functions eq.(3.24). Thus,

∫

Ωe

B
(n)
W

(k)
dΩ =

1

A
(n)

δ
k,n

(3.25)

where the normalization coefficients are

A
(n)

=

{
1

4
,
3

4
,
3

4
,
5

4
,
9

4
,
5

4
,
7

4
,
15

4
,
15

4
,
7

4
, . . .

}

(3.26)

for QUADs, and

A
(n)

=

{
1

8
,
3

8
,
3

8
,
3

8
,
5

8
,
5

8
,
5

8
,
9

8
,
9

8
,
9

8
,
7

8
,
7

8
,
7

8
,
27

8
,
15

8
,
15

8
,
15

8
,
15

8
,
15

8
,
15

8
, . . .

}

(3.27)

for HEX elements.
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With these, given a function U (x, y, z) within an element, its n-th momentum

(degree of freedom) can be computed as

U
(n)

=

Ng∑

g

ωgU (xg)B(n)

(
χg

)
(3.28)

where xg =
(
xg , yg , zg

)
, χg =

(
ξg , ηg , ζg

)
, and ωg are the physical-space coor-

dinate of, the reference-space coordinate of, and the weight of the g-th Gaussian

quadrature point, respectively; while Ng is the total number of integration points.

For evaluation of diffusion operators and for reconstruction/recovery, it is im-

portant to have a mapping from the orthogonal basis functions eq.(3.20) to the

Taylor basis functions eq.(3.6). This mapping is defined by matrices denoted as

L
(Pn)

2T
. Defining the vector of orthogonal DoFs in element as U

(k)
, and the vector

of Taylor DoFs as V
(k)

, the third-order mapping L
(P2)

2T
in 2D is




















1 0 0 0 0 0

0 ξ
x
0

η
x
0

0 0 0

0 ξ
y
0

η
y
0

0 0 0

0 L
(P2)

2T
2,4

L
(P2)

2T
3,4

3ξ
2

x
0

2ξ
x0
η
x0

3η
2

x
0

0 L
(P2)

2T
2,5

L
(P2)

2T
3,5

3ξ
x
0
ξ
y
0

ξ
x
0
η
y
0
+ ξ

y
0
η
x
0

3η
x
0
η
y
0

0 L
(P2)

2T
2,6

L
(P2)

2T
3,6

3ξ
2

y
0

2ξ
y
0
η
y
0

3η
2

y
0




















︸ ︷︷ ︸

L
(P2)

2T









U
(0)

U
(1)

U
(2)

U
(3)

U
(4)

U
(5)









=









V
(0)

V
(1)

V
(2)

V
(3)

V
(4)

V
(5)









(3.29)

where

L
(P2)

2T2,4
= ηx0

∂ηξx0 + ξx0 ∂ξ
ξx0 L

(P2)

2T3,4
= ηx0

∂ηηx0
+ ξx0 ∂ξ

ηx0

L
(P2)

2T2,4
= η

y0
∂

η
ξ
x0

+ ξ
y0
∂

ξ
ξ
x0

L
(P2)

2T3,4
= η

y0
∂

η
η
x0

+ ξ
y0
∂

ξ
η
x0

L
(P2)

2T2,4
= ηy0

∂ηξy0
+ ξy0

∂
ξ
ξy0

L
(P2)

2T3,4
= ηy0

∂ηηy0
+ ξy0

∂
ξ
ηy0

(3.30)
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Similarly, the fourth-order mapping is defined as

L
(P3)

2T
















U
(0)

U
(1)

U
(2)

U
(3)

U
(4)

U
(5)

U
(6)

U
(7)

U
(8)

U
(9)
















=
















V
(0)

V
(1)

V
(2)

V
(3)

V
(4)

V
(5)

V
(6)

V
(7)

V
(8)

V
(9)
















(3.31)

L
(P3)

2T
=




























1 0 0 0 0 0 0 0 0 0

0 ξx
0

ηx
0

0 0 0 L
(P3)

2T
7,2

L
(P3)

2T
8,2

L
(P3)

2T
9,2

L
(P3)

2T
10,2

0 ξy0
ηy0

0 0 0 L
(P3)

2T7,3
L
(P3)

2T8,3
L
(P3)

2T9,3
L
(P3)

2T10,3

0 L
(P3)

2T
2,4

L
(P3)

2T
3,4

L
(P3)

2T
4,4

L
(P3)

2T
5,4

L
(P3)

2T
6,4

L
(P3)

2T
7,4

L
(P3)

2T
8,4

L
(P3)

2T
9,4

L
(P3)

2T
10,4

0 L
(P3)

2T2,5
L
(P3)

2T3,5
L
(P3)

2T4,5
L
(P3)

2T5,5
L
(P3)

2T6,5
L
(P3)

2T7,5
L
(P3)

2T8,5
L
(P3)

2T9,5
L
(P3)

2T10,5

0 L
(P3)

2T
2,6

L
(P3)

2T
3,6

L
(P3)

2T
4,6

L
(P3)

2T
5,6

L
(P3)

2T
6,6

L
(P3)

2T
7,6

L
(P3)

2T
8,6

L
(P3)

2T
9,6

L
(P3)

2T
10,6

0 L
(P3)

2T
2,7

L
(P3)

2T
3,7

L
(P3)

2T
4,7

L
(P3)

2T
5,7

L
(P3)

2T
6,7

L
(P3)

2T
7,7

L
(P3)

2T
8,7

L
(P3)

2T
9,7

L
(P3)

2T
10,7

0 L
(P3)

2T
2,8

L
(P3)

2T
3,8

L
(P3)

2T
4,8

L
(P3)

2T
5,8

L
(P3)

2T
6,8

L
(P3)

2T
7,8

L
(P3)

2T
8,8

L
(P3)

2T
9,8

L
(P3)

2T
10,8

0 L
(P3)

2T
2,9

L
(P3)

2T
3,9

L
(P3)

2T
4,9

L
(P3)

2T
5,9

L
(P3)

2T
6,9

L
(P3)

2T
7,9

L
(P3)

2T
8,9

L
(P3)

2T
9,9

L
(P3)

2T
10,9

0 L
(P3)

2T2,10
L
(P3)

2T3,10
L
(P3)

2T4,10
L
(P3)

2T5,10
L
(P3)

2T6,10
L
(P3)

2T7,10
L
(P3)

2T8,10
L
(P3)

2T9,10
L
(P3)

2T10,10




























(3.32)

For this and all other mapping matrices, we only show non-zero pattern, for

brevity.
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The third-order mapping L
(P2)

2T
in 3D will be defined as

L
(P2)

2T
















U
(0)

U
(1)

U
(2)

U
(3)

U
(4)

U
(5)

U
(6)

U
(7)

U
(8)

U
(9)
















=
















V
(0)

V
(1)

V
(2)

V
(3)

V
(4)

V
(5)

V
(6)

V
(7)

V
(8)

V
(9)
















(3.33)

where

L
(P2)

2T
=

























1 0 0 0 0 0 0 0 0 0

0 ξx
0

ηx
0

ζx
0

0 0 0 0 0 0

0 ξy
0

ηy
0

ζy
0

0 0 0 0 0 0

0 ξz0
ηz0

ζz0
0 0 0 0 0 0

0 L
(P2)

2T
2,5

L
(P2)

2T
3,5

L
(P2)

2T
4,5

L
(P2)

2T
5,5

L
(P2)

2T
6,5

L
(P2)

2T
7,5

L
(P2)

2T
8,5

L
(P2)

2T
9,5

L
(P2)

2T
10,5

0 L
(P2)

2T
2,6

L
(P2)

2T
3,6

L
(P2)

2T
4,6

L
(P2)

2T
5,6

L
(P2)

2T
6,6

L
(P2)

2T
7,6

L
(P2)

2T
8,6

L
(P2)

2T
9,6

L
(P2)

2T
10,6

0 L
(P2)

2T2,7
L
(P2)

2T3,7
L
(P2)

2T4,7
L
(P2)

2T5,7
L
(P2)

2T6,7
L
(P2)

2T7,7
L
(P2)

2T8,7
L
(P2)

2T9,7
L
(P2)

2T10,7

0 L
(P2)

2T
2,8

L
(P2)

2T
3,8

L
(P2)

2T
4,8

L
(P2)

2T
5,8

L
(P2)

2T
6,8

L
(P2)

2T
7,8

L
(P2)

2T
8,8

L
(P2)

2T
9,8

L
(P2)

2T
10,8

0 L
(P2)

2T2,9
L
(P2)

2T3,9
L
(P2)

2T4,9
L
(P2)

2T5,9
L
(P2)

2T6,9
L
(P2)

2T7,9
L
(P2)

2T8,9
L
(P2)

2T9,9
L
(P2)

2T10,9

0 L
(P2)

2T
2,10

L
(P2)

2T
3,10

L
(P2)

2T
4,10

L
(P2)

2T
5,10

L
(P2)

2T
6,10

L
(P2)

2T
7,10

L
(P2)

2T
8,10

L
(P2)

2T
9,10

L
(P2)

2T
10,10

























(3.34)
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The fourth-order mapping in 3D is
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where we skipped the details of the matrix L
(P3)

2T
, for brevity.

3.4.4 In-cell reconstruction

The basic idea of the in-cell reconstruction is to build (reconstruct) additional de-

grees of freedom locally, at each element, thereby increasing the order of accuracy

without solving for corresponding PDEs. Consider for example the RDG
P2P3

, in

two dimensions3. We solve for six degrees of freedom per variable (cell-average,

2 slopes and 3 curvatures), which represents the third-order-accurate piecewise-

quadratic solution in the element. We want however to enhance the solution lo-

cally to the fourth-order, representing the piecewise-cubic solution in an element

as

U (ξ, η) = U
(0)

+U
(1)
B

(1)
+U

(2)
B

(2)
+U

(3)
B

(3)
+U

(4)
B

(4)
+U

(5)
B

(5)
︸ ︷︷ ︸

Solved for

+

+U
(6)
B

(6)
+U

(7)
B

(7)
+U

(8)
B

(8)
+U

(9)
B

(9)
︸ ︷︷ ︸

Reconstructed

(3.36)

3Extension to a generic RDG
PnPm

and three dimensions is straightforward.
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In this case, four degrees of freedom U
(6,7,8,9)

are reconstructed in each element,

using the following least-squares in-cell reconstruction procedure.

We seek for the missing DoFs, forming the normal least-squares problem:
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︸ ︷︷ ︸
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︸ ︷︷ ︸

R

(3.37)

Each of these 24 equations represents a constraint, being enforced on the re-

constructed solution polinomial, in the least squares sense.
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Cell-centered constraints

The first four equations in the system (3.37) are formulated by requiring the in-cell

solution eq.(3.36) to reconstruct the cell-centered (point-wise) solutions in four4

face-neighboring cells A, B, C and D, when extended beyond the cell E under the

consideration. The “extended” solution profile can be written as

U (x̄, ȳ) = L
(P3)

2TE
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T
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T
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T
(7)

(x̄, ȳ)
T

(8)
(x̄, ȳ)

T
(9)

(x̄, ȳ)
















(3.38)

where T
(n)

are the Taylor basis functions, as defined by eq.(3.6), while x̄ = x−x
E

and ȳ = y − y
E
. Thus, each of the first four equations in (3.37) can be formed

by setting (x̄, ȳ) to (x̄
A
, ȳ

A
), (x̄

B
, ȳ

B
), (x̄

C
, ȳ

C
) and (x̄

D
, ȳ

D
), and then collecting

the coefficients in the front of U
(6,7,8,9)

– these are the M1αβ
in eq.(3.37), while the

rest terms are stashed into the right-hand-side terms R1β
, where α = 1, 2, 3, 4 and

β =A,B,C and D.

Notably, the cell-centered solutions in the neighbor cells are directly available

from the DoFs solved for, to the order of interest:

U
(
x

β
, y

β

)
= U

(0)β
−

− 1

Ω
β

∫

Ω
β

(

V
(3)β

(x−x
β)

2

2
+V

(4)β

(
x− x

β

) (
y − y

β

)
+V

(5)β

(y−y
β )

2

2

)

dΩ (3.39)

where V
(3,4,5)β

are computed using eq.(3.29).

This assemble procedure can be easily coded for a generic set of the RDG
PnPm

reconstruction/mesh geometry.

4In the discussion, we are considering QUAD elements. Extension to HEX elements is straight-

forward.
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Slope-consistency constraints

The next eight equations represent the requirement for the “extended” solution

shape to be consistent with the point-wise solution derivatives, in the face-neigh-

boring cells A, B, C and D. For derivatives in x-directions,

∂

∂x̄
U (x̄, ȳ) = L

(P3)

2TE
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(3.40)

The assemble procedure is straightforward – set (x̄, ȳ) to (x̄
A
, ȳ

A
), (x̄

B
, ȳ

B
),

(x̄
C
, ȳ

C
) and (x̄

D
, ȳ

D
), collect the coefficients in the front of U

(6,7,8,9)
– these are

the M2αβ
in eq.(3.37), and collect all the rest into right-hand-side terms R2β

.

The cell-centered derivatives V
(1)β

and V
(2)β

in the neighbor cells are avail-

able from the DoFs solved for, to the order of interest (the 4th), using eq.(3.29).

Similar procedure is applied for the slopes in y-direction, to assemble the M3αβ

and R3β
, using

∂

∂ȳ
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2TE
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(3.41)
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Curvature-consistency constraints

All the rest 12 equations are designed to enforce the point-wise curvature consis-

tency. For the second derivatives in x-direction,

∂2

∂x̄2
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2TE
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which can be used to assemble the M4αβ
and R4β

.

To get the M5αβ
and R5β

, one can use
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while
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is utilized to assemble the M6αβ
and R6β

.

The cell-centered curvatures V
(3)β

, V
(4)β

and V
(5)β

in the neighbor cells are

available from the DoFs solved for, to the 4th order of interest, using eq.(3.29).

Least-Squares Solution

Once the non-square matrix M and the r.h.s. vector R are assembled, the least-

squares problem eq.(3.37) can be solved for U
(6,7,8,9)

as:







U
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U
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U
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=
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M
T

M

)−1 (

M
T

R

)

(3.45)

Importantly, before applying eq.(3.45), both the M and R are normalized by first

finding the element of the matrix M with the largest absolute value, Mmax , and

then dividing both the M and R on Mmax . This helps to get a better conditioned

matrix inversion in eq.(3.45), which is especially relevant for the higher-order

(> 3rd) reconstructions.

Blended recovery/reconstruction operator

We found that a better (more accurate) solution can be achieved by adding integral

(weak) statements into the least squares formulation eq.(3.37). In this case, the

least-squares problem become:
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︸ ︷︷ ︸
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R
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︸ ︷︷ ︸

R

(3.46)

where the equations

M71o
U

(6)
+M72o

U
(7)

+M73o
U

(8)
+M74o

U
(9)

= R7o
, o = 0, ...,N7 (3.47)
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are added to enforce (in the least-squares sense) integral (recovery) properties. In

eq.(3.47), N7 could optionally be 0, 2 or 5, depending on the order of weak state-

ments decided to be “blended in” (cell-average-, slope- or curvature- “integral

consistency”). In most cases considered here, we enforce only the cell-average

(N
7
= 0) consistency.

More specifically, the integral statements being implemented are

∫

Ω
β

ωwU (x, y)B
(o)β

(x, y) dΩ =
ωwU(o)β

A
(o)

(3.48)

where the ωw is the weight of the integral statements (in most cases considered

here – set to 10, i.e. contributing ten times more than the strong statements); the

U (x, y) is the reconstructed solution in the cell under consideration, eq.(3.36);

the B
(o)β

is the orthogonal basis function (the oth-order) in the neighbor cell β; the

A
(o)

is the normalization coefficient, as defined by eq.(3.26); and the U
(o)β

is the

oth-order DoF in the neighbor cell β. The eq.(3.48) corresponds to the constraints

utilized in the in-cell recovery schemes, as introduced in [NTP+08, NPM09].

This enforces the Sobolev-space consistency of the reconstructed fields, with the

“solved for” DoFs – here, in the least-squares sense.

To convert eq.(3.48) to the discrete form eq.(3.47), we replace the integral

with the summation over the Gaussian integration points in the neighbor cells β,

collect the coefficients in the front of U
(6,7,8,9)

– these are the M7αo
, and stash all

the rest terms into the r.h.s. terms R
7o

. This assembling procedure can be easily

generalized to any order and in three dimensions.

Boundary conditions

Boundary elements require special consideration. In this case, some of the neigh-

bor elements are missing. While it is totally acceptable to just drop corresponding

equations from the least-squares formulation eq.(3.37) – the resulting linear al-

gebra eq.(3.45) is still well-behaved, we do enforce boundary conditions in the

in-cell reconstruction, as discussed below. We believe that infusing BC into the

reconstruction results in a better conditioned and more accurate discretization

scheme.
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Fig. 3.3 : On treatment of boundary conditions for the RDG
P2P3

in-cell recon-

struction.

Without loss of generality, consider a boundary element as depicted in Figure

3.3. In the considered case, the face at η = 1 is at the boundary. Suppose we

want to enforce Dirichlet BC5. On the boundary face – we define six boundary

nodes, with the reference-space coordinates χ
n=0,..,5

=
(
−1

7
, 1
)
,
(
−3

7
, 1
)
,
(
−5

7
, 1
)
,

(
1
7
, 1
)
,
(
3
7
, 1
)

and
(
5
7
, 1
)

6. The boundary condition values at these nodes are as-

5Extension to other types of boundary conditions is straightforward.
6For other orders and element types, for the face with η = 1, we use the following face

boundary node reference-space coordinates:

Element type Reconstruction χ
n

RDGP
0
P
1

(0, 1)

QUAD RDGP1P2

(
± 1

2
, 1
)
, (0, 1)

RDGP
2
P
3

(
± 1

7
, 1
)
,
(
± 3

7
, 1
)
,
(
± 5

7
, 1
)

RDGP
0
P
1

(0, 1, 0)

HEX RDGP
1
P
2

(
± 1

2
, 1, 0

)
,
(
0, 1,± 1

2

)
, (0, 1, 0)

(3.49)
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sumed to be available, generally as a function of time, Fn (t). To enforce these

Dirichlet BC values, we replace the “missing neighbor” sub-block in eq.(3.37),

with the following sub-block

ω
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These six equations are derived to enforce the reconstructed in-cell polynomial

eq.(3.36) to be equal to the boundary values F
n
. This will be satisfied in the least-

squares sense, and how close – will be controlled by the variable BC weight, ω
BC

,

usually set in the range from 1 to 10.

The Neumann boundary conditions are enforced similarly. Given the nor-

mal derivatives of the function at boundary nodes dF
d~n

∣
∣
k
(t), the “replacement”

sub-block is

ω
BC
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where ~n =
(
nx , ny

)
is the normal-to-the-boundary vector. The matrix M

Neumann
is

Similar for the faces with ξ = ±1, η = −1 and ζ = ±1.
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defined as

M
Neumann

=














− 114
49

a0
1
49

(105a0 − 13b0 ) −a0 + 15
7
b0 −6b0

6
49

a1
1
49
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7
b1 −6b1

66
49
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1
49
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(3.52)

where

a
k

= ξx(k)nx + ξy(k)ny

b
k

= η
x(k)

n
x
+ η

y(k)
n

y

(3.53)

and ξx(k) , ξy(k) , ηx(k)
and ηy(k)

are components of the inverse of the Jacobian

eq.(3.14), evaluated at the kth boundary node. The r.h.s. terms D
k

are defined

as
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2

(
−7U

(1)
+ 3U

(3)
− 7U

(4)

)
+ b

2

(
−7U

(2)
+U

(4)
− 21U

(5)

)

D
3

= −a
3

(
7U

(1)
+ 3U

(3)
+ 7U

(4)

)
− b

3

(
7U

(2)
+U

(4)
+ 21U

(5)

)

D
4

= −a
4

(
7U

(1)
+ 9U

(3)
+ 7U

(4)

)
− b

4

(
7U

(2)
+ 3U

(4)
+ 21U

(5)

)

D5 = −a5

(
7U

(1)
+ 15U

(3)
+ 7U

(4)

)
− b5

(
7U

(2)
+ 5U

(4)
+ 21U

(5)

)

(3.54)

The six equations (3.51) are derived to enforce the normal derivatives of the re-

constructed in-cell polynomial eq.(3.36) to be equal to the given boundary normal

derivatives dF
d~n

∣
∣
k
. Similarly to the Dirichlet BC, this will be satisfied in the least-

squares sense, with the “dial” ω
BC

, controlling the weight of these constraints after

eq.(3.45) is applied.

Generalization

It is understood that different-order reconstructions are implemented in the similar

fashion. For example, in 2D RDG
P0P1

, we solve for the cell averages (finite-
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volume formulation), and reconstruct the slopes:

U (ξ, η) = U
(0)

︸︷︷︸

Solved for

+U
(1)
B

(1)
+U

(2)
B

(2)
︸ ︷︷ ︸

Reconstructed

(3.55)

using the cell-centered constraints. Similarly, for 2D RDG
P1P2

, we solve for the

cell averages and slopes, reconstructing the curvatures

U (ξ, η) = U
(0)

+U
(1)
B

(1)
+U

(2)
B

(2)
︸ ︷︷ ︸

Solved for

+U
(3)
B

(3)
+U

(4)
B

(4)
+U

(5)
B

(5)
︸ ︷︷ ︸

Reconstructed

(3.56)

utilizing the cell-centered and slope consistency constraints.

It is also feasible to developed a more “aggressive” reconstruction7, for exam-

ple the RDG
P1P3

in 2D:

U (ξ, η) = U
(0)

+U
(1)
B

(1)
+U

(2)
B

(2)
︸ ︷︷ ︸

Solved for

+

+ U
(3)
B

(3)
+U

(4)
B

(4)
+U

(5)
B

(5)
+U

(6)
B

(6)
+U

(7)
B

(7)
+U

(8)
B

(8)
+U

(9)
B

(9)
︸ ︷︷ ︸

Reconstructed

(3.57)

3.4.5 Inter-cell reconstruction

The inter-cell reconstruction is applied to compute parabolic (and elliptic) oper-

ators. For these, we consider the unions of the face-neighboring cells. For each

pair, we reconstruct a “consistent-with-parabolic-operator” solution profile, which

is used for compute diffusion flux at each Gaussian point of the corresponding

face.

Without loss of generality, we will discuss a union of cells E and A, as depicted

in Figure 3.4. For 2D RDG
P2P3

, the inter-cell reconstructed solution is

U (x̄, ȳ) = V
(0)

+V
(1)
T

(1)
(x̄, ȳ) +V

(2)
T

(2)
(x̄, ȳ) +V

(3)
T

(3)
(x̄, ȳ)+

+V
(4)
T

(4)
(x̄, ȳ) +V

(5)
T

(5)
(x̄, ȳ) +V

(6)
T

(6)
(x̄, ȳ)+

+V
(7)
T

(7)
(x̄, ȳ) +V

(8)
T

(8)
(x̄, ȳ) +V

(9)
T

(9)
(x̄, ȳ)

(3.58)

where x̄ = x − x
AE

, ȳ = y − y
AE

, and (x
AE
, y

AE
) =

(
x
A
+x

E

2
,
y
A
+y

E

2

)

. The de-

grees of freedom being reconstructed are V
(0,...,9)

. Note that these are based on the

7Though, not attempted here.
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Fig. 3.4 : On intercell reconstruction.

Taylor basis functions, as it is more consistent/convenient with the intended use

in diffusion operators (the Fourier fluxes and the Navier-Stokes stress tensor).

To find these DoFs, we form the following normal least-squares problem:























M0,0A
M0,1A

... M0,9A

M0,0E
M0,1E

... M0,9E

M1,0A
M1,1A

... M1,9A

M1,0E
M1,1E

... M1,9E

...
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... M9,9A
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... M9,9E

M10,0o
M10,1o

... M10,9o

...
























︸ ︷︷ ︸
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(3)

V
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V
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(8)

V
(9)
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R0E
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R1E

...

R9A

R9E

R10o

...
























︸ ︷︷ ︸

R

(3.59)

The first 20 equations enforce a point-wise consistency of the inter-cell recon-
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structed solution with the in-cell reconstructed solutions, in the cell centers (r
A

and r
E
). These are – two solution values, four slopes, six curvatures, and eight (re-

constructed) third derivatives. In the generic representation, the individual equa-

tions used for the assemble are

∂s+k

∂x̄sȳk
U (x̄, ȳ) =
















V
(0)

V
(1)

V
(2)

V
(3)

V
(4)

V
(5)

V
(6)

V
(7)

V
(8)

V
(9)
















AE

∂s+k

∂x̄sȳk
















T
(0)

(x̄, ȳ)

T
(1)

(x̄, ȳ)

T
(2)

(x̄, ȳ)
T

(3)
(x̄, ȳ)

T
(4)

(x̄, ȳ)

T
(5)

(x̄, ȳ)
T

(6)
(x̄, ȳ)

T
(7)

(x̄, ȳ)

T
(8)

(x̄, ȳ)
T

(9)
(x̄, ȳ)
















(3.60)

Similar to the procedure used for the in-cell reconstruction, we collect the coeffi-

cients in the front of V
(0,...,9)

– these are the Mγ,αβ
in eq.(3.59), and stash all the

rest into right-hand-side terms R
γβ

. In this case, γ, α = 0, ..., 9, and β =A, E.

The equations

M10,0o
V

(0)
+M10,1o

V
(1)

+ ...+M10,9o
V

(9)
= R10o

, o = 0, ..., 9 (3.61)

represent the “blended-in” weak statements, which both increase the accuracy and

the robustness of the reconstruction. Similar to the in-cell reconstruction, we use

Gaussian integration and the larger weights for these constraints (mostly, set to

ωw = 10).

The boundary conditions are implemented by imposing the values/derivatives/etc.

at boundary nodes, incorporated into the eq.(3.59) – along the lines of the discus-

sion for the in-cell least squares reconstruction. The statements from the “missing-

neighbor” elements are, obviously, dropped.

Finally, after the non-square matrix M and the vector R are assembled, we
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solve for




















V
(0)

V
(1)

V
(2)

V
(3)

V
(4)

V
(5)

V
(6)

V
(7)

V
(8)

V
(9)




















=
(

M
T

M

)−1 (

M
T

R

)

(3.62)

The matrix M and the vector R are scaled, and we use the Gauss-Jordan algorithm

for the matrix inversion.

3.4.6 Weighted residuals

The weighted residual vector for each finite element can be expressed as

R
k
= ∂

t
U

k
+A

k

∫

Γe

(
F

j
−D

j

)
n

j

B
k

|J|dΓ−

−A
k

∫

Ωe

[
(
F

j
−D

j

)
(

∂
j
B

k
− B

k

|J|∂j
|J|
)

+ SB
k

]
1

|J|dΩ (3.63)

where k denotes the DoFs we solve for, and

∂
j
B

k
=
∂B

k

∂ξ

∂ξ

∂x
j

+
∂B

k

∂η

∂η

∂x
j

+
∂B

k

∂ζ

∂ζ

∂x
j

, x
j
= {x, y, z} (3.64)

∂
j
|J| = ∂ |J|

∂ξ

∂ξ

∂x
j

+
∂ |J|
∂η

∂η

∂x
j

+
∂ |J|
∂ζ

∂ζ

∂x
j

(3.65)

The discrete forms of these residuals will appear in the non-linear solver, as de-

scribed in Chapter 4.
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The face- and domain-integrals –
∫

Γe

and
∫

Ωe

– correspondingly, are replaced by

the weighted summation over the corresponding Gaussian points.

The hyperbolic fluxes F
j

are computed using the piecewise-discontinuous so-

lutions at each face Gaussian point, evaluated using the in-cell reconstructed so-

lution profiles, Section 3.4.4, from each side of the face. Using the solutions from

each side, U
(g,L)

and U
(g,R)

, an approximate Riemann solver is applied, to com-

pute the numerical flux. For the test cases with relatively large Mach numbers, we

use the Local Lax Friedrichs (LLF) scheme [Tor99]:

F
(g)

j
=

1

2

(

F
(g,L)

j
+ F

(g,R)

j
+ α

LLF
λ
(

U
(g,L) −U

(g,R)
))

(3.66)

where λ is the maximum eigenvalue, while α
LLF

is the adjustable numerical dif-

fusion coefficient – usually set to 1.

For the Navier-Stokes solver with very low Mach numbers, we either set the

coefficient α
LLF

to small numbers (say, for M = 10
−2

and RDG
P2P3

– α
LLF

=
0.1), or use the following “incompressible” variation:

F
(g)

j
=

1

2

(

F
(g,L)

j
+ F

(g,R)

j
+ |v|

max

(

U
(g,L) −U

(g,R)
))

(3.67)

where |v|
max

is the input parameter, corresponding to the maximum material ve-

locity for the problem under consideration.

For evaluation of the diffusion fluxes, we utilize the inter-cell reconstructed

solution profiles, Section 3.4.5, computing the corresponding numerical diffusion

flux at each face Gaussian integration point. Here, we do not consider any jumps

in material properties, though - we allow non-linearity of the diffusion coefficients

(i.e., temperature-dependent).

The fluxes and source terms appearing in the domain integral of eq.(3.4.5) are

evaluated using the in-cell reconstructed solution profiles. Because of using of

the in-cell reconstructed solution, there is no need for variations/modifications as

discussed in [LvL09], referred to as RDG-1x and RDG-2x (once/twice-partially-

integrated), including additional extra boundary terms. Rather – our approach is

along the lines of the RDG-1x (once-partially-integrated), which offers an easy

implementation of non-linear diffusion operators.
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Finally, time discretization operators and related non-linear solver and precon-

ditioning will be discussed in Chapter 4.

3.4.7 Pros and cons

As discussed in the motivation for moving to the orthogonal basis functions, the

current formulation is generally better-conditioned (and more diagonally-dominant),

as compared to the (non-orthogonal) Taylor basis functions, developed in

[LLNM09], [LLNM10c], [LLNM10b], [LLNM10a], [LLNC11], [LLN12],

[LXL+12], [LXS+13], [XLFN14] and [XLN14]. This feature is very important

for fully-implicit time discretization, used in this study. In particular, based on

the numerous experimentation with the performance of this approach (see Chap-

ter 5), we encounter no difficulty to use the high-order RDG
P2P3

, even for very

stiff physics, at very low Mach number conditions, on rather bad (highly dis-

torted/stretched) meshes.

On the other hand, there is an extra cost during the reconstruction (both the

in-cell and the inter-cell), due to the need to evaluate matrices, mapping from

the degrees of freedom for our orthogonal basis functions, to the Taylor basis

functions, which are still being utilized for the basic solution reconstruction pro-

cedures. When used within an implicit solver, the significant part of the compu-

tational cost is associated with linear steps (Krylov iterations) – both in terms of

CPU time and memory storage (the size of the Krylov subspace). Thus, we tend

to believe that an extra effort during the reconstruction when using the orthogonal

basis functions is a worthwhile investment, enabling simulations of rather difficult

physical problems, with the sought-after accuracy and robustness.
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Chapter 4

Fully-Implicit Time Discretization

I
N this chapter, we describe fully-implicit time discretization, Section 4.1, and

related linear and non-linear solution algorithms, Sections 4.2 and 4.7.

4.1 Time discretization

4.1.1 Implicit time discretizations

An implicit time discretization of Eq.(2.1) can be written as

~U [k]
= ~U [n]

+∆t
k∑

r=1

a
kr
~S
(

~U [r]
)

, k = 1, ..., s− 1

~U [n+1]
= α~U [n−1]

+ β ~U [n]
+∆t

(

b0
~S
(

~U [n]
)

+
s∑

r=1

br
~S
(

~U [r]
)) (4.1)

where s is the total number of implicit Runge-Kutta (IRK) stages, while a
kr

and

br are the stage and the main scheme weights, respectively.

• In the case of α = 0, β = 1, s = 1, b0 = 0 and b1 = 1, Eq.(4.1) reduces to

the first-order Backward Euler (BE1) discretization.

• In the case of α = − ∆t2

∆tn−1(2∆t+∆tn−1)
, β = ∆t

∆tn−1

∆t+∆tn−1

2∆t+∆tn−1
, s = 1, b0 =

0 and b
1
= 1, Eq.(4.1) reduces to the second-order Backward Difference

(BDF2) discretization.

• In the case of α = 0, β = 1, s = 1, b0 =
1
2

and b1 =
1
2
, it is the second-order

Crank-Nicholson (CN2) scheme.

60
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4.1.2 Explicit, Singly Diagonally Implicit Runge-Kutta (ESDIRK)

A family of high-order IRK schemes recently developed by Carpenter et al. [BCVK02]

[CKB+05] is particularly useful for all-speed flow solvers, since these schemes

not only do not amplify any left-half-plane-(LHP)-scaled eigenvalues (A-stability),

but also provide a complete damping of all eigenvalues including those at the limit

||z → ∞|| (L-stability). These IRK schemes are prescribed by b0 = 0 and the

Butcher tableau of the following form:

0 0 0 0 0 ... 0
c2 a21 γ 0 0 ... 0
c3 a31 a32 γ 0 ... 0
... ...

c
s−1 a

(s−1)1
a
(s−1)2

... ... γ 0

1 b1 b2 b3 ... b
(s−1)

γ

b
1

b
2

b
3
... b

(s−1)
γ

b̂1 b̂2 b̂3 ... b̂
(s−1)

b̂
(s)

(4.2)

where cr denotes the point in time of the rth-stage, t
[n]

+ cr∆t. Note that the first

stage is explicit, and the diagonal elements for all stages r > 1 are the same, a
rr
=

γ, which is why this family is called “Explicit, Singly Diagonal Implicit Runge-

Kutta” (ESDIRK) in the literature. Note that the pth-order ESDIRKp schemes

allow to compute (p− 1)th-order solution, as

~U [n+1]
= ~U [n]

+∆t
s∑

r=1

b̂r
~S
(

~U [r]
)

(4.3)

The coefficients of ESDIRK
3,4,5

’s Butcher tableau were derived in [BCVK02,

CKB+05, NTP+08], and given in Appendix B.

4.2 Newton-Krylov solver

Each stage of IRK eq.(4.1) requires solution of the non-linear system in the form

~res
(

~X
)

= 0 (4.4)

where

~X =
(

~U (k=0,...,p)T

1
, ~U (k=0,...,p)T

2
, ..., ~U (k=0,...,p)T

Ncells

)T

(4.5)
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is a solution vector which includes all (p+ 1) degrees of freedom for all variables

in all N
cells

computational cells1. The residual vector ~res for each DoF at the cell

(c) takes the form:

res
U
(k)
c

= U (k)[rk]

c
− U (k)[n]

c
−∆t

rk∑

r=1

a
rk,r

S(k)

c

(

~X [r]
)

(4.6)

To solve eq.(4.4), we use the Newton-Krylov (NK) method [KK04]. Details of

the used inexact Newton algorithm, Jacobian-free GMRES method, and precon-

ditioning are discussed next.

4.3 Newton’s method

We solve Eq.(4.6) with Newton’s method, iteratively, as a sequence of linear prob-

lems defined by

J
a

δ ~X a

= − ~res
(

~X a
)

(4.7)

The matrix J
a

is the Jacobian of the ath Newton’s iteration and δ ~X a

is the update

vector. Each (i,j)th element of the Jacobian matrix is a partial derivative of the ith

equation with respect to the jth variable:

J
i,j

≡ ∂res
i

∂X
j

(4.8)

The linear system Eq.(4.7) is solved for δ ~X a

, and the new Newton’s iteration value

for ~X is then computed as

~X a+1

= ~X a

+ λ
a

δ ~X a

(4.9)

where λ
a

is the step-length determined by a line search procedure [DS83], while

δ ~X a

is the search direction. Newton’s iterations on ~X are continued until the

convergence criterion
∣
∣
∣

∣
∣
∣ ~res

(

~X a
)∣
∣
∣

∣
∣
∣
2

< tol
N

∣
∣
∣

∣
∣
∣ ~res

(

~X 0
)∣
∣
∣

∣
∣
∣
2

(4.10)

is satisfied. The nonlinear tolerance tol
N

is varied from 10−3 to tol
N
= 10−8.

1It is instructive to emphasize that the reconstructed DoFs are not a part of the solution vector.
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4.4 Krylov subspace iterations (GMRES)

The linear solver used in our code is the Arnoldi-based Generalized Minimal

RESidual method (GMRES) [SS86]. It belongs to the general class of Krylov

subspace iteration methods. These projection (Galerkin) or generalized projec-

tion (Petrov-Galerkin) methods [Saa03] are suitable for solving non-symmetric

linear systems of the form eq.(4.7), using the Krylov subspace, K
j
,

K
j
= span

(

~r0, J~r0 , J
2

~r0 , ..., J
j−1

~r0

)

(4.11)

where ~r0 = J
a

δ ~X a

0
+ ~res

(

~X a
)

. In GMRES, the Arnoldi basis vectors form a trial

subspace out of which the mth-iteration solution is constructed:

δ ~X a

m
= δ ~X a

0
+ k0~r0 + k1J~r0 + k2J

2

~r0 + ...+ kmJ
m

~r0 (4.12)

where (k0 , k1, ..., km) are “coordinates” of the mth trial solution in the Krylov sub-

space. As one can see, only matrix-vector products are required to create new trial

vectors. The iterations are terminated based on a by-product (free) estimate of the

residual that does not require explicit construction of intermediate residual vec-

tors. This is a major advantage of GMRES over other Krylov methods. GMRES

has a residual minimization property in the Euclidean norm. The major drawback

of GMRES is that it requires the storage of all previous Arnoldi/(Krylov) basis

vectors. This problem can be alleviated with efficient preconditioning.

4.5 Jacobian-free implementation

Since GMRES does not require individual elements of the Jacobian matrix J, it

never needs to be explicitely constructed. Instead only matrix-vector multipli-

cations J~κ are needed, where ~κ ∈ (~r0, J~r0 , J
2~r0 , ...) are Krylov vectors. Thus,

Jacobian-free implementations are possible. The action of the Jacobian matrix

can be approximated by Fréchet derivatives

J~κ ≈
~res
(

~X + ε~κ
)

− ~res
(

~X
)

ε
(4.13)

There are two approaches for choosing ε.
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Brown & Saad. The first approach is due to [BS90]:

ε =







ǫ
rel

~XT

~κ

||~κ||2
2

if
∣
∣
∣ ~X ′

~κ
∣
∣
∣ > X

min
||~κ||

1

ǫ
rel
X

min
Sign

(

~X T

~κ
) ||~κ||

1

||~κ||2
2

otherwise
(4.14)

Pernice & Walker. The second approach is taken from [PW98]:

ε =

ǫ
rel

√

1 +
∣
∣
∣

∣
∣
∣ ~X
∣
∣
∣

∣
∣
∣

||~κ|| (4.15)

The only control parameter is ǫ
rel

. Note that for the entire linear iterative

process ~X does not change. Therefore,

√

1 +
∣
∣
∣

∣
∣
∣ ~X
∣
∣
∣

∣
∣
∣ need be computed only

once.

With the Jacobian-free formulation, the work associated with forming the Ja-

cobian matrix and its storage can be eliminated, which is a significant saving of

both CPU time and storage, provided that the number of Krylov vectors is kept

small (see Section 4.7). Moreover, in many non-linear applications, the Jacobian

matrix is not available due to size and complexity.

When used with (incomplete) factorization as a preconditioning techniques,

explicit form of (approximate) Jacobian can be computed using eq.(4.13).

4.6 Inexact Newton

One important modification to Newton’s method employed here is called an in-

exact Newton’s method [KK04]. The term “inexact” refers to the accuracy of the

iterative linear solver. The basic idea is that the linear system must be solved

to a tight tolerance only when the added accuracy matters – i.e., when it affects

the convergence of the Newton’s iterations. This is accomplished by making the

convergence of the linear residual proportional to the non-linear residual:
∣
∣
∣

∣
∣
∣J

a

δ ~X a

m + ~res
(

~X a
)∣
∣
∣

∣
∣
∣ ≤ ν

a

∣
∣
∣

∣
∣
∣ ~res

(

~X a
)∣
∣
∣

∣
∣
∣ (4.16)

By default, νa is a constant (in most computations of the present study we use

νa = 10−3). Alternatively, one can invoke the algorithm by Eisenstat and Walker

[EW96], which computes νa at each step of the nonlinear solver.
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4.7 Preconditioning

Because GMRES (Section 4.4) stores all of the previous Krylov vectors, it is nec-

essary to keep the number of iterations relatively small, to prevent the storage and

CPU time from becoming prohibitive. This is accomplished by preconditioning

the linear system. Preconditioning is a transformation of the original linear sys-

tem into one with the same solution, but is easier to solve with an iterative solver

[Saa03]. We are using the right-preconditioned form of the linear system,

J
a

P
−1

︸ ︷︷ ︸

Ĵ

Pδ ~X a

︸ ︷︷ ︸

δ ~Ya

= − ~res
(

~X a
)

(4.17)

where P−1 approximates J−1. The right-preconditioned version of Eq.(4.13) is

JP
−1~κ ≈

~res
(

~X + εP−1~κ
)

− ~res
(

~X
)

ε
(4.18)

This operation is applied once per GMRES iteration, in two steps:

I. Preconditioning: approximately solve δ ~Ya

= P−1~κ

II. Compute matrix-free product: JδYa ≈ ~res( ~X
a
+εδ ~Y

a
)− ~res( ~X

a
)

ε

Finding a good preconditioner is often a combination of art, science, and intu-

ition. A mathematically good preconditioner should efficiently cluster the eigen-

values of the iteration matrix [Saa03, KK04]. A preconditioner can also be defined

as any subsidiary approximate solver that is combined with an outer iteration tech-

nique (e.g., multigrid, or one of the Krylov iteration solvers). One of the simplest

and most popular ways of defining a preconditioner is to perform an incomplete

lower-upper (ILU) factorization of the original matrix J. A number of variations

– ILU(k), ILUT, ILUS, ILUC, etc. – are discussed in [Saa03]. This is what we

use in the present study.

A variety of ILU-based preconditioners are available through PETSC [BGMS97,

BBG+01, BBE+04]. In this study, we use block Jacobi or overlapping Additive

Schwarz methods, which are supported in PETSC in parallel. In some simula-

tions, we used direct solvers – either PETSC’s LU factorization (supported only
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in serial), or superlu (parallel implementations). To utilize these preconditioners,

we need to compute and store approximate Jacobian matrices. For this, we use

PETSC’s utilities with finite difference approximations and coloring algorithms

(see [BGMS97, BBG+01, BBE+04] for details).

PBP. An important class of preconditioners for the JFNK method is referred to

as Physics-Based-Preconditioning (PBP) or PDE-based [KK04]. The motivation

behind this approach is that there exist numerous legacy operator-split algorithms

to solve nonlinear systems. These algorithms were developed with insight into

physical time scales of the problem. A direct benefit of this insight – a reduced

implicit system, or a sequence of segregated semi-implicit solvers can be applied,

instead of attempting to solve the fully-coupled system. Relevant fluid dynamics

examples include the semi-implicit all-speed-flow Implicit Continuous-fluid Eu-

lerian (ICE) algorithm [HA71], the semi-implicit incompressible-flow SIMPLE

[Pat80] and the Projection algorithms [Cho67]. While PBP is beyond the scope

of the present study, we believe this is the way to go in the future.

4.8 Preconditioning with primitive variable formu-

lation

While the residue function in the MWR are written to satisfy underlying con-

servation laws, eq.(3.1), conservative variables U are often a poor choice (see

discussion in Section 2.2.3), as the Jacobian matrix

J
i,j

≡ ∂res
i

∂U
j

might be extremely ill-conditioned. Instead, one can (should) solve for another

(mathematically equivalent) set of unknowns, which will render a better condi-

tioned system. We denote this set of unknowns as primitive variables, V. Intro-

ducing transformation

δU =
∂U

∂V
δV (4.19)

linear steps of Newton iterations can be written as:

∂ ~res

∂U

∂U

∂V
︸ ︷︷ ︸

J̃
i,j

≡ ∂res
i

∂V
j

δV = − ~res (4.20)
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Note that with a proper choice of V, the Jacobian

J̃
i,j

≡ ∂res
i

∂V
j

is better conditioned. This should be viewed as preconditioning, as it is concep-

tually similar to eq.(4.17). It is important to note that change of variables do not

affect conservation, as residue functions are still written in the conservative form.

Upon convergence of non-linear iterations, conservation is satisfied to the chosen

tolerance level.



Chapter 5

Numerical Examples

I
N this chapter, we present numerical demonstrations of our algorithm perfor-

mance on different test problems. We start with verification of m-consistency

of the RDG reconstruction, in Section 5.1, followed by manufactured solution

for non-linear heat conduction, Section 5.2, where we confirm high-order conver-

gence rates for both space and time discretization. Next, we demonstrate per-

formance of the algorithm for solving non-linear diffusion problem on highly

stretched and distorted mesh, using Kershaw Z-mesh, in Section 5.3, investigating

mesh imprinting effects. Fluid dynamics examples are presented in Sections 5.5

(manufactured solution), 5.6 (driven cavity flows) and 5.7 (vortex shedding).

5.1 On m-consistency

Linear consistency as a constraint required to achieve a desired level of accuracy

in gradient calculation of finite-volume methods was discussed by Barth and Jes-

person [BJ89]. This is a highly desired property of the reconstruction, which is

not only the measure of accuracy and robustness, but also a feature which mini-

mizes mesh imprint effects.

It is well known that the least-squares reconstruction of in-cell gradients (i.e.,

our RDG
P0P1

) is linearly consistent. This means that linear field is reconstructed

exactly (to round-off), on any mesh. Since our RDG is hierarchical, all RDG
PnPn+1

for n > 0 are linearly consistent as well, as verified in Table 5.1. The method how-

ever is not quadratically consistent on irregular meshes, Table 5.2. This is because

the second derivatives in reference space are different from those in physical space

68
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a) 

b) 

Fig. 5.1 : Meshes utilized for verification of m-consistency.

(due to transformation), and since the method is hierarchical in reference space,

there is not quarantee that quadratic shape in physical space is reconstructed ex-

actly. However, if the reconstructed function is quadratic in reference space, it is

reconstructed exactly, as demonstrated using regular mesh1, in Table 5.3. Sim-

ilar, the RDG
P2P3

method is cubicly consistent in reference space, as expected,

which is shown in Table 5.4. While both the RDG
P0P1

and RDG
P1P2

are not cu-

bically consistent, the reconstruction errors diminish with mesh refinement, with

expected the second and the third-order, for the RDG
P0P1

and RDG
P1P2

scheme,

respectively.

1On regular mesh, reference and physical space are consistent, in terms of spatial derivatives.
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Table 5.1 : On linear consistency (m = 1) of the reconstructed field T (x, y) =
1 + x+ y, on irregular mesh shown in Figure 5.1a

METHOD
√
N L2 -norm

16 3.1580501711291E-14

RDG
P0P1

round-off

32 3.1467415647531E-14

16 3.2977841363630E-14

RDG
P
1
P
2

round-off

32 3.2182873435292E-14

Table 5.2 : On quadratic consistency (m = 2) of the reconstructed field T (x, y) =

1 + x+ y + x2

2
+ xy + y2

2
, on irregular mesh shown in Figure 5.1a

METHOD
√
N L2 -norm

128 2.4064E-5

RDGP
0
P
1

Rate: 2.031

256 5.8810E-6

128 9.3012E-8

RDG
P
1
P
2

Rate: 3.002

256 1.1612E-8
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Table 5.3 : On quadratic consistency (m = 2) of the reconstructed field T (x, y) =

1 + x+ y + x2

2
+ xy + y2

2
, on regular mesh shown in Figure 5.1b

METHOD
√
N L

2
-norm

128 2.9336E-5

RDG
P
0
P
1

Rate: 2.096

256 6.8633E-6

128 5.3642839975098E-12

RDG
P
1
P
2

Rate: 4.105, close to round-off

256 3.1172059528318E-13

128 5.1527272612064E-14

RDGP
2
P
3

Round-off

256 5.1331277454087E-14
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Table 5.4 : On cubic consistency (m = 3) of the reconstructed field T (x, y) =

1+ x+ y+ x2

2
+ xy+ y2

2
+ x3

6
+ x2y

2
+ xy2

2
+ y3

6
, on regular mesh shown in Figure

5.1b

METHOD
√
N L2 -norm

128 4.7060E-6

RDG
P0P1

Rate: 2.114

256 1.0867E-6

128 6.5828E-9

RDG
P
1
P
2

Rate: 3.068

256 7.8489E-10

128 5.5017735726317E-14

RDG
P
2
P
3

Round-off

256 5.3830895500297E-14
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5.2 Manufactured Solution for Non-Linear Heat Con-

duction

To test convergence in space and time for the problem with diffusion operator, the

following solution is manufactured,

T (x, y) = A cos (2π (x+ bt)) sin (2π (y + ct)) (5.1)

in 2D, and

T (x, y, z) = A cos (2π (x+ bt)) sin (2π (y + ct)) sin
(π

2
(z + dt)

)

(5.2)

in 3D; where

A = 1 + a sin (2πt) (5.3)

and a, b, c, d are given constants.

In 2D, we used computational domain shown in Figure 5.2. There are six

geometrical parameters, describing computational domain: X
0
, X

1
, Y

0
, Y

1
, α and

β. We set
X0 = −1
X1 = 1
Y

0
= −0.5

Y1 = 0.5

while α and β are varied, to allow different levels of mesh stretching/distortion.

For 3D domain, we add three geometrical parameters – Z0 , Z1 and γ, Figure

5.3. We fixed
Z0 = −0.4
Z1 = 0.4

and allow γ to vary.

Manufactured solutions eqs.(5.1) and (5.2) correspond to a translating (with

velocity w) and oscillating (with amplitude a) thermal wave, as shown in Figures

5.4 and 5.5 for 2D, and in Figures 5.6 and 5.5 for 3D. In these simulations, we set

α = β = γ = 10
◦

a = 1
2

w = (b, c, d) =
(
1
2
, 1
2
, 1
2

)
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x

y

X0 X1

Y1

α

β

Y0

Fig. 5.2 : On domain and mesh setup for 2D manufactured solution test problem.

α = β = 10◦.

Z0

Z1

γ

Fig. 5.3 : On domain and mesh setup for 3D manufactured solution test problem.

α = β = γ = 10◦.
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t=0.1

t=0.3

t=0.7

Fig. 5.4 : 2D manufactured temperature field as a function of time. Simulation

with RDG
P2P3

and ESDIRK
3

schemes, using ∆t = 0.1 on domain with 32,762

elements, partitioned with 32 CPUs (partitioning is also shown).
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t=1.0

t=1.3

t=1.6

Fig. 5.5 : 2D manufactured temperature field as a function of time. Simulation

with RDG
P2P3

and ESDIRK
3

schemes, using ∆t = 0.1 on domain with 32,762

elements, partitioned with 32 CPUs (continued).
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Fig. 5.6 : 3D manufactured temperature field as a function of time. Simulation

with RDG
P0P1

and ESDIRK3 schemes, using ∆t = 0.1 on domain with 524,288

elements, partitioned with 32 CPUs (partitioning is also shown).
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Fig. 5.7 : 3D manufactured temperature field as a function of time. Simulation

with RDG
P0P1

and ESDIRK3 schemes, using ∆t = 0.1 on domain with 524,288

elements, partitioned with 32 CPUs (continued).
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Material properties are temperature dependent,

ρ (T ) = ρ
0
+ ρ

1
T

C̃v (T ) = C̃v0
+ C̃v1

T

κ (T ) = κ0 + κ1T

(5.4)

Unless otherwise noted, we set ρ0 = 1, ρ1 = 0, C̃
v0

= 1, C̃
v1

= 0.1, κ0 = 1 and

κ1 = 0.1, which makes both transient and diffusion operators quadratic. Also,

we show results for temperature formulation (Section 2.1.4). (Specific internal

energy and enthalpy formulations performed similarly).

To enforce manufactured solutions, source terms are added to the r.h.s. of

eq.(2.8), derived using symbolic calculations in Mathematica.

In the following sections, we test performance of three space discretizations –

• RDG
P0P1

,

• RDG
P1P2

and

• RDG
P2P3

,

and six time discretizations –

• Backward Euler (BE),

• 2nd-order backward differencing (BDF2),

• Crank-Nicholson (CN2) and

• three implicit Runge-Kutta schemes (ESDIRK3,4,5).

For non-linear iterations, we use inexact Newton with backtracking line search,

solved to the tolerance of 10
−8

. To precondition GMRES, we use additive Schwarz

(AS) combined with ILU5 [BBE+04].

5.2.1 Time convergence

First, we test time convergence of our method, using the fourth-order-accurate

RDG
P2P3

on the mesh with 32,768 elements, Figure 5.8. With this scheme on
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Non-Linear Heat Conduction, Manufactured Solution, 2D
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, 32,768 elements, AS(ILU

5
) preconditioner

2.005
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3.362 ...Space discretization errors...
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Fig. 5.8 : Time convergence of the temperature field, t = 0.2.
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1.996

Time discretization errors
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Fig. 5.9 : Spatial convergence of the temperature field.
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this mesh, space discretization errors are on the order of ∼ 10
−7

, below time

discretization errors of interest.

We note that the schemes up to the third order accuracy converge with rates

close to theoretical. For higher-order ESDIRK4,5 , we could not attain theoretical

the fourth- and the fifth-order convergence rate, most probably because time dis-

cretization errors are small, and becoming comparable with space discretization

errors, at the asymptotic convergence range of time steps.

5.2.2 Space convergence

Next, we demonstrate convergence in space, by setting time discretization to

ESDIRK5 and 2 × ∆t = 0.00625. With these, time discretization errors are at

∼ 10
−8

, which allows an accurate measurement of space convergence, Figure 5.9.

First, we note the RDG
P0P1

and RDG
P2P3

converge with rates close to the-

oretical – i.e., the second (for RDG
P0P1

) and the fourth (for RDG
P2P3

), in both

2D and 3D formulations. The third-order RDG
P1P2

however converged with only

second order rate. This is because the third-order terms of inter-cell reconstruc-

tion dissappear during face flux integration, as discussed in Section 3.4.5. It is

necessary to have even-order scheme to get consistent discretization of diffusion

fluxes. Nevertherless, linear RDG RDG
P1P2

is more accurate than finite-volume

RDG
P0P1

, as its second-order errors are generally smaller, Figure 5.9.

It is instructive to note that the blended inter-cell recovery/reconstruction op-

erator is more accurate than pure reconstruction (with strong statements in least-

squares problem only), as discussed in Section 3.4.5.

In general, the fourth-order RDG
P2P3

is superior, as for the mesh resolution

of practical range – it is orders of magnitude more accurate. For this test problem,

we are getting similarly accurate solutions using 2,048 elements with RDG
P2P3

,

as compared to 2,097,152-element-mesh with RDG
P0P1

. This is ×1, 000 sav-

ing in just mesh allocation, which compensates plenty for additional expenses of

RDG
P2P3

, due to ×6 larger solution vector per element, per variable, and com-

putational cost for residual evaluation on elements with high-order. Additional

benefits emerge due to conditioning of linear iterations, as the elements are larger

(smaller effective Fo numbers), and the total sizes of the solution vectors for linear

algebra are significantly smaller.
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Fig. 5.10 : A sample of partitioning for 2D case, with 128 domains.

Fig. 5.11 : A sample of partitioning for 3D case, with 128 domains.
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 Linux cluster, 2.8GHz Intel Xeon
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Parallel strong scaling, Non-Linear Heat Conduction
RDG

P
2
P

3
, CN

2
, 8,192 elements, ∆t=0.1 (2 steps), AS(ILU

5
) preconditioner

Fig. 5.12 : On strong parallel scalability of the algorithm, in 2D.

5.2.3 On parallel scalability

In this section, we show strong scalability of the algorithm, using the fourth-order-

accurate RDG
P2P3

. Even though high-order discretization is significantly more

expensive than finite-volume RDG
P0P1

, on the same mesh – these are mostly

local costs, due to residual evaluation for each element. Thus, we can see very

reasonable strong scalability even on very small mesh, as shown in Figure 5.12,

when partitioned as shown in Figures 5.10 and 5.11.
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Fig. 5.13 : Kershaw Z mesh.

5.3 On mesh imprinting and related

To demonstrate the method’s ability to compute diffusion operator through a mesh

with highly skewed elements, we utilize the problem introduced by Kershaw in

[Ker81]. In the computational domain of size 1 × 1, we generated a mesh with

a distinct Z pattern, Figure 5.13. The mesh generation parameters are X0 = 0.2,

Y0 = 0.2, and Y1 = 0.35; with grid resolution set to N = 16, L = 16, P =
16 and K = 20. We solve non-linear heat conduction equation in temperature

formulation, Section 2.1, with ρ = 1, C̃v = 1 and temperature-dependent thermal

conductivity,

κ (T ) = κ0 + κ1T
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where κ0 = 1 and κ1 = 0.1. Initial temperature is set to 1. Neumann bound-

ary conditions are applied at horizontal walls. For vertical walls, we use Dirich-

let boundary conditions, with T
L
= 2 at the left wall, and T

R
= 1 at the right

wall. Computations are performed with the third-order accurate ESDIRK3 time

discretization, with time step ∆t = 10−2, which corresponds to Fourier number

Fo ∼ 2000. Fourier number is defined as

Fo =
α∆t

∆h2
(5.5)

where the thermal diffusivity α is computed as

α =
κ

ρCv

(5.6)

and ∆h is the scale of the smallest elements. Nearly steady-state is achieved at

t = 1.

Computational results are shown in Figures 5.14 and 5.15, for the second-

and the fourth order-accurate space discretizations (RDG
P0P1

and RDG
P2P3

). It

can be clearly seen that no any mesh-imprint “chevron” patterns are observed, re-

sulting in nearly perfect one-dimensional temperature field, with vertical straight

isolines of temperature. The undesirable “chevron” patterns effects are attribut-

ted to many schemes for diffusion operator, as reported by Rebourcet in [Reb07].

We believe that negligible mesh-imprint features of our scheme are attributted to

m-consistency, as discussed in Section 5.1.
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Fig. 5.14 : Temperature field as a function of time, for RDG
P0P1

.
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Fig. 5.15 : Temperature field as a function of time, for RDG
P2P3

.
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5.4 Melting of a stainless steel brick

Our next example is testing the method’s performance for heat conduction with

phase change. We consider melting of a large block made of stainless steel, sub-

jected to heating from two side walls. Computational domain is described by

Figure 5.2, with α = β = 20
◦

. Initially, the whole block is at room temperature

300 K. At t = 0, we applied Dirichlet boundary conditions T
L
= 1, 800 K from

the left, and T
R
= 2, 000 K from the right. Top and bottom walls are adiabatic

(with Neumann bondary conditions applied). We solve energy equation (2.8), us-

ing temperature formulation, Section 2.1.4. The phase change model is described

in Section 2.1.6.

The following properties are used for stainless steel:

ρ = 7, 753 kg
m3

Cv = 486 J
kg·K

κ = 40 W
m·K

T
S

= 1, 500 K

T
L

= 1, 501 K

u
f

= 105 J
kg

(5.7)

Equations are solved in non-dimensional form, Section 2.1.7, with

ρ̄ = 7, 753 kg
m3

T̄ = 1, 000 K
L̄ = 1 m
t̄ = 1 sec
C̄v = 486 J

kg·K

Thus, ū = 4.86 · 105 J
kg

and κ̄ = 3.77 · 106 W
m·K ; and dimensionless thermal

conductivity is

κ̂ = 1.0616 · 10−5

Computational results are summarized in Figures 5.16-5.22. First, we show

the history of the temperature field, in Figures 5.16 and 5.17. Simulations are
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t=4,000 sec

t=44,000 sec

t=84,000 sec

Fig. 5.16 : Temperature field and solidus/liquidus isolines as a function of time,

for RDG
P2P3

with ESDIRK3 . 32,768 elements. ∆t = 2, 000 sec (Fo ∼ 850).

Temperature is scaled by T̄ = 1, 000K. CPU partitioning (domain decomposition)

is also indicated as dotted lines.
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t=88,000 sec

t=92,000 sec

t=96,000 sec

Fig. 5.17 : Temperature field and solidus/liquidus isolines as a function of time,

for RDG
P2P3

with ESDIRK3 (cont.).
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t=4,000 sec

t=44,000 sec

t=84,000 sec

Fig. 5.18 : Specific internal energy field and solidus/liquidus isolines as a function

of time, for RDG
P2P3

with ESDIRK3 . 32,768 elements. ∆t = 2, 000 sec (Fo ∼
850). Specific internal energy is scaled by ū = 4.86 · 105 J

kg
.
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t=88,000 sec

t=92,000 sec

t=96,000 sec

Fig. 5.19 : Specific internal energy field and solidus/liquidus isolines as a function

of time, for RDG
P2P3

with ESDIRK3 (cont.).
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Fig. 5.20 : Specific internal energy field as a function of time, for RDG
P2P3

with

ESDIRK
3
. 32,768 elements. ∆t = 2, 000 sec (Fo ∼ 850). Specific internal

energy is scaled by ū = 4.86 · 105 J
kg

.
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Fig. 5.21 : Comparison of RDG
P2P3

and RDG
P0P1

space discretizations, for melt-

ing front (solidus) position. Simulations with ESDIRK3 with ∆t = 2, 000 sec.
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Fig. 5.22 : Comparison of ESDIRK3 and BE time discretizations, for melting front

(solidus) position. Simulation with RDG
P2P3

on mesh with 32,768 elements, and

∆t = 2, 000 sec (Fo ∼ 850).
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performed using the RDG
P2P3

and ESDIRK3 schemes, with resolution of 32,768

elements in total and ∆t = 2, 000 sec. In these figures, we also show the position

of the melting front, as isolines for solidus (black solid line), and liquidus (dashed

yellow line). As one can see, it takes about 251
2

hours to completely meltdown the

block under the given conditions.

Next, we show the history of specific internal energy, in Figures 5.18-5.20.

There is a distinctive jump in internal energy at the melting front, corresponding

to latent heat. Thus, using the specific internal energy (or enthalpy) as solution

variables (see Sections 2.1.2 and 2.1.3) without limiters is not recommended. This

causes oscillations emanating from the melting front, and related to this problem

to converge non-linear iterations, as the Newton method is having a hard time

to lock onto a converging solution. On the other hand, since temperature is a

smooth-across-front variable, there are no any problems to achieve robust conver-

gent solutions, which are typically obtained within 3 to 5 non-linear iterations,

using critical point secant line search algorithm [BBE+04]. It is important to note

that even though non-convergent Newton solutions do not affect significantly the

order of time accuracy, they do affect conservation, as the method is fully conser-

vative only upon convergence of non-linear iteration loop. Here, we set non-linear

tolerance to 10
−8

.

Finally, we show the effects of discretization schemes in Figures 5.21 and

5.22. It is apparent that space discretization errors are of minor importance, as

both the RDG
P0P1

and the RDG
P2P3

result in nearly identical melting front posi-

tions, Figure 5.21. It is instructive to note that the RDG
P2P3

solution is obtained

on the mesh with roughly an order of magnitude less elements, and approximately

4 times less total number of degrees of freedom (solution vector size), as com-

pared to the RDG
P0P1

scheme solution. Due to larger element size (smaller Fo

number) and smaller total solution vector size, GMRES converged faster, when

using RDG
P2P3

– i.e., ∼ 20 Krylov iterations per linear step in average, vs. ∼ 70
Krylov iterations for RDG

P0P1
. This would not be possible with non-orthogonal

basis functions, as condition numbers degrade significantly with increase of the

order of accuracy. In these simulations, we used an additive Schwarz (AS) com-

bined with ILU
5

[SBG96, BBE+04] preconditioner. The smaller solution vectors

and Krylov subspace sizes are advantageous also from the point of view memory,

as less space required to allocate for the approximate Jacobian matrix and Krylov

subspace vectors.
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The effects of time discretization are more significant. As one can see from

Figure 5.22, the melting front due to the first-order Backward Euler scheme is

lagging behind the one predicted by the more accurate ESDIRK3 scheme. It is

worth pointing out that both schemes are unconditionably (L-) stable, allowing

us to use rather aggressive time stepping of ∆t = 2, 000 sec. This time step

corresponds to Fo ∼ 850 for the mesh used by RDG
P2P3

, and to Fo ∼ 20, 000
for the finer mesh of RDG

P0P1
. These are significantly larger than stability limits

of explicit schemes (∆t ≤ 1), which are practically out of question for these types

of applications, due to efficiency/robustness limitations.
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5.5 Manufactured solution for compressible Navier-

Stokes Equations

To test convergence in space and time for the problem with both hyperbolic and

diffusion operators, the following solution is manufactured in 2D,

T (x, y) = T̄ + A
T
cos (2π (x+ v0t)) sin (2π (y + v1t))

P (x, y) = P̄ + A
P
sin (2π (x+ v0t)) cos (2π (y + v1t))

v0 (x, y) = Av cos (2π (x+ v0t)) sin (2π (y + v1t))
v1 (x, y) = Av sin (2π (x+ v0t)) cos (2π (y + v1t))

(5.8)

where

A
T

= δT0 + a
T
sin (2πt)

A
P

= δP0 + a
P
sin (2πt)

Av = δV0 + av sin (2πt)
(5.9)

and T̄ , P̄ , δT0 , δP0 , δV0 , a
T

, a
P

, av , v0 , v1 are given constants.

Solution eq.(5.8) corresponds to translating (with velocity w = (v0 , v1)) and

oscillating (with amplitudes a
T

, a
P

and av ) waves. In the following simulations,

we set
w =

(
1
10
, 1
10

)

P̄ = 1.0
T̄ = 1.0
δP

0
= 0.1

δT0 = 0.1
δV0 = 10−4

a
P

= 0.05
a

v
= 0.01

a
T

= 0.05

We used γ-gas equation of state, with γ = 1.4. Both thermal conductivity and

dynamic viscosity are set to be constant, κ = 0.1 and µ = 0.1. Source terms

generating this manufactured solution are computed using symbolic maniputation

in Mathematica. Computational domain and mesh were the same as in described

in Section 5.2.

Dynamics of pressure and velocity magnitude fields are shown in Figures 5.23

and 5.24, obtained with high-fidelity space and time resolution.



5.5. MANUFACTURED SOLUTION FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS99

t=0.0 

t=0.2 t=0.3 

t=0.4 t=0.5 

t=0.6 
t=0.7 

t=0.1 

Fig. 5.23 : Dynamics of the pressure field for manufactured problem, using

RDG
P2P3

, ESDIRK5 , ∆t = 0.1, 8,192 elements, partitioned with 7 CPUs (parti-

tioning is also shown).
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t=0.0 

t=0.2 t=0.3 

t=0.4 t=0.5 

t=0.6 
t=0.7 

t=0.1 

Fig. 5.24 : Dynamics of the velocity magnitude field for manufactured problem,

using RDG
P2P3

, ESDIRK5 , ∆t = 0.1, 32,762 elements, partitioned with 7 CPUs

(partitioning is also shown).
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Fig. 5.25 : On convergence of the pressure field, with mesh refinement and differ-

ent space discretization schemes.

First, we measure space convergence rates, by using the 5th-order-accurate

time discretization ESDIRK5 and setting time step to 2 × ∆t = 0.001. This en-

sures that time discretization errors are smaller than space discretization errors.

The results are shown in Figures 5.25 and 5.26, for pressure and velocity magni-

tude convergence, respectively. As one can see, all three RDG schemes do con-

verge consistently – i.e., with the second order for RDG
P0P1

, with the third-order

for RDG
P1P2

, and with (approximately) the fourth-order for RDG
P2P3

.

Time convergence is demonstrated in Figures 5.27 and 5.28, for pressure and

velocity magnitude, respectively. In the simulations, we used RDG
P2P3

on the

mesh with 32,762 elements, to ensure small spatial discretization errors. This

space resolution is sufficient to measure nearly asymptotic convergence rates for

time discretization schemes up to the 3rd order accurate. The fourth- and the

fifth-order accurate ESDIRK4,5 schemes exhibit nearly 4th order convergence rate,

when time steps are large. The convergence is flatten for smaller time steps, when

space discretization errors become dominant.
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Fig. 5.26 : On convergence of the velocity field, with mesh refinement and different

space discretization schemes.
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Fig. 5.27 : On convergence of the pressure field, with time step refinement and

different time discretization schemes.
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Fig. 5.28 : On convergence of the velocity field, with time step refinement and

different time discretization schemes.
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5.6 Lid-Driven Cavity

In the present section, we will test no-slip boundary conditions for compressible

Navier-Stokes solver, using the “Lid-Driven Cavity” (“LDC”) flow. This prob-

lem has been established as a standard “benchmark” test for numerical methods

of (nearly-) incompressible fluid dynamics. In [GGS82], Ghia et al. employed

finite-difference method, using steady-state vorticity-stream-function (ω−ψ) for-

mulation of incompressible flow, to obtain solutions in a wide range of Re num-

bers. Using grids with high resolution (129×129 and 257×257) and “coupled

strongly implicit multigrid” method, Ghia et al. provided “reference” data for

comparison of velocity profiles at the vertical and horizontal centerlines of the

square cavity, with no-slip vertical and bottom walls, and moving top wall.

Here, we will simulate this problem using compressible formulation, setting

flow Ma number to low values. We will use γ-gas law, with γ = 1.4. Initially,

the gas is motionless, under ρ = 1 and pressure set to

P =
1

γM2
0

where M0 is flow Mach based on lid velocity. At t = 0, the lid velocity is set to 1.

Fluid temperature is set to 1, with specific heat defined as

C
v
=

1

γ (γ − 1)M2
0

Wall temperatures are kept under Tw = 1. In most simulations, we use M0 =
10

−2
. We used second-order BDF2 time discretization, starting with time step

∆t = 10
−4

, and rapidly increasing it to ∆t = 1 with factor 2.

It is instructive to note that (material/acoustic) CFL numbers with this time

step are approximately (32/32,000), (64/64,000) and (128/12,800) for mesh res-

olutions 32×32, 64×64 and 128×128, correspondingly. While it is evident that

this time step is sufficient to resolve dynamic time scales of the problem (evolu-

tion and break-up of eddies), these would be impossible time steppings for explicit

and operator-splitting time discretization schemes.

5.6.1 Re=400 results

We start with low-Re number, Re = 400, which exhibits steady-state solution

reached at t = 30. There are two secondary vortices formed in the lower corners
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a) 
BL1 

BR1 

b) 

Fig. 5.29 : Velocity magnitude and streamlines, for solutions with a) RDG
P0P1

,

mesh 128×128, and b) RDG
P1P2

, mesh 64×64.

of the cavity (BR1 and BL1, following notation from [GGS82]). All three tested

space discretization schemes (RDG
P0P1

, RDG
P1P2

and RDG
P2P3

) have no prob-

lems to resolve these, as shown in Figure 5.29 for RDG
P0P1

and RDG
P1P2

. It is

instructive to note that we visualized high-order solution by mapping high-order

solutions to nodal values, which in turn are post-processed (by VisIt) piecewise-

linearly. This does degrade quite significantly visible solutions2. A few markers

are placed in certain positions, to enable visualization of streamlines.

Figures 5.30 and 5.31 present the calculated velocity profiles at the cavity’s

vertical and horizontal centerlines. From these plots, one can clearly see that

high-order solutions are much more accurate than both the second-order RDG
P0P1

and vorticity-stream-function solution from [GGS82] – as the solutions on the

mesh 32×32 are rendering plots almost indistiguishable from low-order schemes,

obtained with mesh 128×128.

2A better “multi-resolution” option has been recently introduced in VisIt. We discuss this in

Section 5.7.
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Fig. 5.30 : Comparison of the velocity profile at the cavity’s verical centerline, for

Re = 400.
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Fig. 5.31 : Comparison of the velocity profile at the cavity’s horizontal centerline,

for Re = 400.
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5.6.2 Re=10,000 results

Next, we move to more difficult case with high-Re-number Re = 10
4
. This is the

case when advantages of high-order schemes become more evident.

First, we observe that the solution is not steady-state, as under these high-

Reynolds-number conditions the eddies are constantly evolving: forming, break-

ing, dissappearing. This can be seen from Figures 5.32 and 5.33, showing a se-

quence of snapshots for velocity magnitude and streamlines, obtained with the

fourth-order-accurate RDG
P2P3

scheme on mesh 64×64. This makes direct com-

parison to [GGS82] difficult, as Ghia et al. assumed steady flow solution. Nev-

ertheless, we observed numerous secondary vortices formed, BR1,2 and BL1,2,

which are dynamically growing and decaying. Also, the large central vortex is

unstable and gyrating with a period of approximately 10 time units.

Grid convergence is shown in Figure 5.36, for two space discretizations -

RDG
P0P1

and RDG
P2P3

, using a sequence of meshes with resolution ranging

from 16×16 to 256×256. It is evident that the second-order scheme RDG
P0P1

is significantly more diffusive than the fourth-order-accurate RDG
P2P3

– as the

top wall “boundary layer” and the “jet” forming the primary vortex are thicker

under the coarser mesh. With a better mesh, the solution with the RDG
P0P1

tends

to approach to the one for the RDG
P2P3

. However, even with the 256×256 mesh,

the RDG
P0P1

is still significantly more diffusive than the RDG
P2P3

on the mesh

64×64. This is also evident from the higher level of dumping of the gyrating

motion for the primary vortex, as one can see from Figures 5.33 vs. 5.35 (the

“gyration” offset is significantly smaller3). In order to get a comparable second-

order solution, one should probably solve for using the mesh of 512×512, which

corresponds to the case of more than ten times more total degrees of freedom.

This, in addition to 64 times larger CFL, makes all related underlying linear alge-

bra much more stiff. Combining with more memory requirements for storage of

solution (Krylov) vectors and (approximate Jacobian) matrices for precondition-

ing – the higher-order solutions are much more cost-effective, for these types of

flow. Advantages of the higher-order RDG become even more significant in three

dimensions.

Figure 5.37 demostrates an ability to resolve subcell flow structures, using

3Under the coarser meshes of 64×64 and lower, this gyrating motion is completely dumped by

the RDG
P
0
P
1

.
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t=3 t=10 

t=20 t=30 

t=40 t=35 

Fig. 5.32 : Dynamics of the velocity magnitude and streamlines for Re = 10
4
,

RDG
P2P3

and mesh resolution 64×64.
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t=50 t=45 

t=55 t=60 

t=65 t=70 

Fig. 5.33 : Dynamics of the velocity magnitude and streamlines for Re = 10
4
,

RDG
P2P3

and mesh resolution 64×64 (continued).
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t=3 t=10 

t=20 t=30 

t=40 t=35 

Fig. 5.34 : Dynamics of the velocity magnitude and streamlines for Re = 10
4
,

RDG
P0P1

and mesh resolution 256×256.
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t=50 t=45 

t=55 t=60 

t=65 t=70 

Fig. 5.35 : Dynamics of the velocity magnitude and streamlines for Re = 10
4
,

RDG
P0P1

and mesh resolution 256×256 (continued).
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128x128 

256x256 

16x16 

32x32 

64x64 

BR1,2 

BL1,2 

TL1 

Boundary layer 

Jet 

Fig. 5.36 : On grid convergence for RDG
P0P1

(right) and RDG
P2P3

(left), for

Re = 10
4
, t = 45.
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Fig. 5.37 : On resolution of the TL1 vortex and top wall boundary layer with

RDG
P2P3

and mesh 32×32. Re = 10
4
, t = 28.
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Fig. 5.38 : Comparison of the velocity profile at the cavity’s verical centerline, for

Re = 10
4
, t = 70.
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Fig. 5.39 : Comparison of the velocity profile at the cavity’s horizontal centerline,

for Re = 10
4
, t = 70.
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the 4th order piecewise-cubic RDG
P2P3

scheme. It is evident that with this low

32×32 mesh, all secondary vortices are of the grid size scale. Also, the entire top

wall boundary layer is completely subcell. Nevertheless, the solver is able to cap-

ture all the major flow features with decent accuracy. The second-order RDG
P0P1

scheme on the same mesh failed to capture TL1 vortex. Also, the top wall bound-

ary layer is severely smeared out.

It is instructive to note that the flow field depicted in Figure 5.37 is actu-

ally post-processed by the visualization tool (VisIt), converting nodal velocity

representation (originally piecewise-cubic) to piecewise-linear fields. The actual

piecewise-cubic solution is better.

Finally, we show comparison of instantaneous velocity profiles at vertical and

horizontal centerlines, in Figures 5.38 and 5.39. Because of the transient nature

of the flow, direct comparison with steady-state solution by [GGS82] is difficult.

Nevertheless, from these plots, we can clearly see the importance of space resolu-

tion/order of accuracy for these high-Reynolds-number dynamically-evolving vor-

tical flows. Notice that solutions with RDG
P1P2

on mesh 128×128 and RDG
P2P3

on mesh 64×64 are nearly identical, which is an indicator of sufficient spatial res-

olution. On the other hand, while RDG
P0P1

profiles do tend to approach RDG
P2P3

on mesh 64×64, with better mesh refinement, they are still not there. It would

require mesh resolution in exceed of 512×512, in order to get a comparable solu-

tion. This would be significantly more expensive than RDG
P2P3

on mesh 64×64

– both in solution vector size (and memory requirements), and CPU time.

5.6.3 Aspect ratio 2, Re=10,000 results

Next, we performed simulations of driven-cavity flows using a box with aspect

ratio 2. All simulations are done using the fourth-order RDG
P2P3

and mesh res-

olution 32×64, varying Mach number from 10
−2

to 0.3. The results are shown

in Figures 5.40 and 5.41. Similar to the square cavity case, the flow is unsteady.

There are several secondary vortices dynamically formed in the lower half of the

cavity, as shown in Figure 5.40. There are some differences in the flow dynamics

under different Mach numbers, mostly associated with different timing for sec-

ondary vortical structures formation and break-up, Figure 5.41. It is instructive

to note that CPU time for these three distinct Mach numbers is approximately the

same.
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We are able to push these compressible flow simulations to smaller Mach num-

bers. However, below a certain threshold (in this case, M ≤ 10
−3

), the round-off

errors become significant, preventing a clean solution using γ-gas equation of

state. Note, that in order to reduce Mach number (to increase the speed of sound),

one should increase initial pressure as

P ∼ ρc
2

γ

Thus, for M = 10
−3

, initial pressure is on the order of 106. In this case, it is better

to switch to incompressible flow formulation, which enforces filtering undesir-

able acoustic modes and related inability to solve for non-linear problem tightly

enough, to completely eliminate round-off errors.
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t=10 
t=23 t=30 

t=50 t=70 t=80 

Fig. 5.40 : Dynamics of Mach number field and streamlines, using RDG
P2P3

and

mesh resolution 32×64, for M = 10
−2

.
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M=0.01 M=0.1 M=0.3 

Fig. 5.41 : Comparison of the solution for Mach number field and streamlines, at

t = 80, with different Mach numbers.
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5.7 Shedding Flow past a Triangular Wedge

In the next test, we investigate performance of the orthogonal RDG for resolu-

tion of vortices in the vortex shedding flow behind a triangular wedge. The two-

dimensional wedge is an equilateral triangle, with the side length d = 1. It is

placed in the computational domain of size 40×30, five units downstream of the

inlet. We used inflow boundary conditions at the left, outflow (Neumann) bound-

ary conditions at the right, and free-stream boundary conditions at the top and

bottom, Figure 5.42. At the wedge surface, no-slip isothermal boundary condi-

tions are enforced.

Three successively refined meshes were generated, designed to provide fine

resolution of boundary layers near the wedge. The meshes are depicted in Figure

5.42, and denoted as R1, R2 and R4 – with (2,055), (8,220) and (32,880) QUAD4

elements, correspondingly. Notice that the mesh has high-aspect-ratio elements

in the boundary layer. Also, there are transition zones with high ratio of element

sizes. We intentionally use these (generally considered “bad”) meshes – as they

are known to be difficult for many discretization schemes.

For time discretization, we used BDF2, starting with ∆t = 10
−3

, increasing it

rapidly to ∆t = 1, with time step increase ratio 2. With this time step, the material

Courant number was around 8.4, 16.8 and 33.7, for mesh resolutions R1, R2 and

R4, correspondingly. Acoustic Courant numbers were approximately 840, 1680

and 3370, respectively. On the finest mesh R4, the viscous Fourier number was

around 10.

The Reynolds number (based on the wedge side length) is set to Re = 100
(ν = 10

−2
). With proper dimensionalization, inlet/freestream conditions are

U0 = 1, T0 = 1. We use γ-gas law, with γ = 1.4. Initial pressure was set to

P0 = 7142.857143, which corresponds to M0 = 10−2 and ρ0 = 1, based on the

freestream conditions. By setting C
v
= 1.7857 · 104

and κ = 357, the Prandtl

number is 0.7. Thus, the dimensionless temperature is around 1. At the wedge

surface, we set isothermal boundary conditions, with Tw = 1. Initial conditions

are T = 1, v = 0 and P = P0 .

Under these flow conditions, the flow behind the wedge forms a Karman street.

The unsteady vortices in the Karman street are resolved with proper space-time

resolution. The shedding (if any) starts at dimensionless time (see Section 2.2.7
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R1 

R2 

R4 

Fig. 5.42 : Meshes utilized for shedding flow past a triangular wedge.
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Fig. 5.43 : Steady wake behind the wedge, with RDG
P0P1

on mesh R2. Magnitude

of the velocity vector, at t = 200.
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t=10 t=100 

t=175 t=200 

t=125 t=150 

Fig. 5.44 : Vortex shedding behind the wedge, with RDG
P0P1

on mesh R4. Mag-

nitude of the velocity vector.
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t=10 t=40 

t=90 t=100 

t=130 t=200 

Fig. 5.45 : Vortex shedding behind the wedge, with RDG
P2P3

on mesh R1. Mag-

nitude of the velocity vector.
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t=10 t=40 

t=90 t=100 

t=130 t=200 

Fig. 5.46 : Vortex shedding behind the wedge, with RDG
P2P3

on mesh R2. Mag-

nitude of the velocity vector.
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Fig. 5.47 : Vortex shedding behind the wedge, with RDG
P2P3

on mesh R1. Mach

number field for t = 130.
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Multiresolution, x8 Nodal 

Fig. 5.48 : On visualization of high-order solution with multi-resolution option in

VisIt. Vortex shedding behind the wedge, with RDG
P2P3

on mesh R1. Magnitude

of the velocity vector for t = 130.



5.7. SHEDDING FLOW PAST A TRIANGULAR WEDGE 127

for definitions) ranging from 80 to 100, depending on scheme/resolution utilized.

First, we show results using the second-order RDG
P0P1

. The flow was steady

on the coarse meshes R1 and R2, see Figure 5.43. It seams that numerical dif-

fusion in this scheme is strong enough to damp onset of any instability. We got

unsteady vortex shedding when grid resolution was sufficiently high – as shown

in Figure 5.44 for mesh R4. Note that no explicit triggering of instability is nec-

essary.

The fourth-order solutions with RDG
P2P3

are shown in Figures 5.45, and 5.46,

for meshes R1 and R2, respectively. Comparing with the second-order solution

in Figure 5.44 we notice that instability starts earlier (at t ≈ 75 vs. t ≈ 100 for

RDG
P0P1

). Also, with RDG
P0P1

, the eddies are rather diffused, with only aprox-

imately eight vortices (four pairs) present in the wake. The fourth-order solution

produced approximately 10 eddies (five pairs) in the wake. This is related to better

spatial resolution in the region immediately behind the wedge.

It is instructive to note that we are using recent “multi-resolution” option to vi-

sualize high-order solution representation in elements. In essence, VisIt allows to

refine original elements, and high-order in-cell solution is mapped into the refined

mesh. This allows to get much better images than those from using simple nodal

solution mapping, as discussed in Section 5.6.1. The difference is particularly

noticeable for low mesh resolution, as shown in Figure 5.48. In this particular

visualization, we utilized MFEM output format, which is compatible with VisIt.

Our six degrees of freedom are mapped into 25 gaussian points of Q4 elements,

which are processed by VisIt to render multi-resolution images inside each ele-

ment. In Figure 5.48, each element was subdivided on 82 sub-elements (original

R1 mesh is also shown).
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5.8 Thermally-Driven Natural Convection Flows

As our next test, we utilize a benchmark problem introduced by de Vahl Davis and

Jones in [dJ83, de 83]. The flow in the unit square cavity is driven by gravity, due

to the temperature difference ∆T = T
L
−T

R
, applied at vertical walls. Horizontal

walls are adiabatic. We use the 2-parameter EOS, Section C.6. Simulations are

performed on the sequence of Rayleigh numbers Ra = 10
3
, 10

4
, 10

5
and 10

6
,

defined by eqs.(2.63). Prandtl number eq.(2.59) was fixed at 0.71. Mach number

was varied from ≈ 10−4 (for Ra = 10
3
) to 10−2 (for Ra = 10

6
).

For buyoancy, we utilize the Boussinesq approximation, eq.(2.47).

Computations are done on the sequence of meshes 16 × 16, 32 × 32 and

64 × 64, with RDG
P2P3

and BDF2 time discretization. Non-linear tolerances

are set to 10
−7

, for all solved equations. For all runs, steady-state solutions have

been achieved, running with time steps corresponding to material CFL numbers

in exceed of 50.

Computational results are presented in Figures 5.49-5.51. In Figure 5.49, we

show temperature for different Ra numbers. The plotted isolines of temperature

are in a very good agreement with the benchmark solutions given in [dJ83, de 83].

Steady-state velocity fields and streamline distributions are presented in Figure

5.50, for different Rayleigh numbers. Streamline fields are also consistent with

those of [dJ83, de 83]. Finally, we plot solutions on the sequence of meshes, in

Figure 5.51, which demonstrates space convergence of the solution. For this Ra

number, mesh 32×32 is an adequate resolution with our fourth-order accurate

scheme.

As an addition, we slightly modified the test configuration, performing similar

simulations on non-square domain, described by Figure 5.2, using α = β = 20◦.
This allows to test performance on irregular meshes. Computational results are

shown in Figures 5.52 and 5.53, for three Ra numbers. As one can see, with

the increase of Ra numbers, the boundary layers become thinner, and the overall

vortex flow structure becomes more complex, forming secondary eddy, for Ra =
10

6
.
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Ra=10 
3 

Ra=10 
4 

Ra=10 
5 

Ra=10 
6 

Fig. 5.49 : Temperature distributions for different Ra numbers, with RDG
P2P3

on

the mesh 32×32. 10 isolines.
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Ra=10 
3 

Ra=10 
4 

Ra=10 
5 

Ra=10 
6 

Fig. 5.50 : Velocity and streamline distributions for different Ra numbers, with

RDG
P2P3

on the mesh 32×32.
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16   16 

32   32 

64   64 

x 

x 

x 

Fig. 5.51 : On convergence of temperature and velocity/streamline fields for Ra =
106, with RDG

P2P3
.
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Ra=10 
4 

Ra=10 
5 

Ra=10 
6 

Fig. 5.52 : Temperature distributions for different Ra numbers, with RDG
P2P3

on

the mesh 64×32. 10 isolines.
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Ra=10 
4 

Ra=10 
5 

Ra=10 
6 

Fig. 5.53 : Velocity and streamline distributions for different Ra numbers, with

RDG
P2P3

on the mesh 64×32.
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5.9 Rayleigh-Bénard Convection

In our next test, we investigate performance of our numerical algorithm for unstably-

stratified natural convection flows. Computational domain is a 4×1 rectangular

cavity, uniformly discretized on the sequence of meshes refined from 32×8 to

512×128. Vertical walls are adiabatic. The lower horizontal wall is heated (at

const temperature), while the upper wall is cooled. Simulations are performed for

Pr = 0.1 and the sequence of Ra numbers 4.5 · 103
, 2.8 · 104

and 1.2 · 106
(see

definitions in eqs.(??) and (??)). Similar simulations were performed in [Nou98],

using commercial CFD code CFX4, based on the incompressible SIMPLE family

of solvers. In current simulations, we kept Mach numbers ≈ 10
−2

. For low Ra

numbers, 4.5·103
and 2.8·104

, nearly steady-state solutions are obtained. For high

Ra = 1.2 · 106
, no steady solution exists. All simulations are started with mo-

tionless constant-temperature field, slowly increasing temperature at the bottom

to reach the needed temperature difference. We used BDF2 time discretization,

with time steps corresponding to material CFL ≈ 5, at quasi steady-state of the

high-Ra-number test case. For low-Ra-number cases, steady-state solutions are

reached with material CFL numbers in exceed of 100s. For all runs, nonlinear

tolerance was set to 10
−7

.

Computational results are presented in Figures 5.54-5.63. First, we show de-

pendence of the solution fields on Ra number, in Figures 5.54 and 5.55. The

solutions are steady for Ra numbers below 10
6
. Above Ra = 10

6
, the thermal

cells/vortices become unstable, starting to “wiggle” at quasi steady-state, as shown

in Figures 5.56 and 5.57.

Mesh convergence is shown in Figures 5.58 - 5.63. For low Ra number, the

adequate solution can be obtained with just eight elements across the cavity, if the

4th-order RDG
P2P3

scheme is utilized, Figures 5.58 and 5.59. Notice the slight

sensitivity of the vortex position to the grid resolution, as the ascending plum is

formed at the center of the cavity, for the mesh 32×8. This is different from the

solution on the finer meshes, for which the vortices established at steady-state ro-

tate in the opposite direction (i.e., at the center – we got a blob instead). This is

typical of flows with instabilities, for which the final flow pattern is sensitive to

modeling/discretization parameters.

Figures 5.60 and 5.61 depict grid convergence for high Ra number, using the

fourth-order accurate RDG
P2P3

scheme. In this case, while we still observe de-
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pendence of the vortex rotational direction on the mesh resolution, it is evident

that can get a good solution with only eight elements in the vertical direction. All

the flow features are captured, including the subtle “wiggling” of the plums, with

a frequency consistent with high-fidelity runs. This is in contrast to the second-

order RDG
P0P1

scheme, Figures 5.62 and 5.63, which exhibits stable steady-state

patterns for meshes with a fewer than 64 elements in the vertical direction. With

further mesh refinement, the finite volume RDG
P0P1

scheme resolves the proper

flow pattern and plume “wiggling” effects.

It is instructive to note “broken” patterns for isolines of temperature, very vis-

ible for RDG
P0P1

on the coarse mesh. This is because of the picewise-linear rep-

resentation of the solution on each element, which forms notable discontinuities

at element faces, when mesh resolutions are poor. On the same mesh, piecewise-

cubic RDG
P2P3

solution is much smoother.
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Ra=4.5  10 
3 

x 

Ra=2.8  10 
4 

x 

Ra=1.2  10 
6 

x 

Fig. 5.54 : Temperature distributions for different Ra numbers, with RDG
P2P3

on

the mesh 128×32.



5.9. RAYLEIGH-BÉNARD CONVECTION 137

Ra=4.5  10 
3 

x 

Ra=2.8  10 
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x 

Ra=1.2  10 
6 

x 

Fig. 5.55 : Velocity and streamline distributions for different Ra numbers, with

RDG
P2P3

on the mesh 128×32.
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t=19.2 

t=19.4 

t=19.6 

t=19.8 

t=20 

Fig. 5.56 : On oscillations of temperature field at quasi-steady-state, with

RDG
P2P3

on the mesh 128×32.
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t=19.2 

t=19.4 

t=19.6 

t=19.8 

t=20 

Fig. 5.57 : On oscillations of velocity and streamline fields at quasi-steady-state,

with RDG
P2P3

on the mesh 128×32.
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Ra=4.5  10 
3 

x 

32   8 x 

64   16 x 

128   32 x 

Fig. 5.58 : On mesh convergence of temperature field, using RDG
P2P3

. Ra =

4.5 · 103
.
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Ra=4.5  10 
3 

x 

32   8 x 

64   16 x 

128   32 x 

Fig. 5.59 : On mesh convergence of velocity/streamline fields, using RDG
P2P3

.

Ra = 4.5 · 103
.
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Ra=1.2  10 
6 

x 

32   8 x 

64   16 x 

128   32 x 

Fig. 5.60 : On mesh convergence of temperature field, using RDG
P2P3

. Ra =

1.2 · 106
.
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Ra=1.2  10 
6 

x 

32   8 x 

64   16 x 

128   32 x 

Fig. 5.61 : On mesh convergence of velocity/streamline fields, using RDG
P2P3

.

Ra = 1.2 · 106
.
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64   16 x 

128   32 x 

256   64 x 

Ra=1.2  10 
6 

x 

512   128 x 

Fig. 5.62 : On mesh convergence of temperature field, using RDG
P0P1

. Ra =

1.2 · 106
.
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64   16 x 

128   32 x 

256   64 x 

Ra=1.2  10 
6 

x 

512   128 x 

Fig. 5.63 : On mesh convergence of velocity/streamline fields, using RDG
P0P1

.

Ra = 1.2 · 106
.
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Fig. 5.64 : History of the left wall temperature loading factor.

5.10 Natural Convection with Phase Change

In our last numerical test, we investigate the method’s performance for problems

with solidification. The computational domain was an irregular rectangular box,

as described by Figure 5.2, using α = β = 20◦. Two distinct test cases are inves-

tigated. The scaling parameters for these test cases are given in Table 5.5.

Initially, the pool was motionless, and the temperature was set well above the

liquidus. In dimensionless units, T̂
init

= 2. The liquidus temperature was defined

to be T̂
L
= 1.5, while the solidus temperature was T̂

S
= 1.45 for the low Ra-

number case, and T̂
S
= 1.4 for the high Ra-number test problem. The transients

are started with dropping the left wall temperature down to the liquidus temper-

ature (smoothly, within one dimentionless time unit), keeping at this level for

awhile – so that a nearly steady-state natural circulation is established, and then

dropping the left wall temperature more, below the solidus, down to T̂
LFT

= 1,

Figure 5.64. The right wall temperature was kept const, at T̂
RGT

= 2, well above

the melting point. The top and bottom walls are adiabatic. This initiated a forma-
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Table 5.5 : Scaling parameters for the tests

Parameter TEST-1 TEST-2

Ra 10
3

10
6

Gr 10
4

10
7

Re 10
2

3, 162

Pr 0.1

Ste 4.854

tion of the solid crust layer. We used the viscosity-based material strength model,

as discussed in Section 2.3.3. The parameters of this model are f
S
= 10

2
, α = 10

and ω = 2, which corresponds to the variation of the viscosity factor as depicted

in Figure 2.2.

Simulations are performed with the second-order BDF2 time discretization,

setting the non-linear tolerances at the level of 10
−7

for the mass and momen-

tum equations, and at 10
−5

for the energy equation. A sample of the convergence

for Newton iterations (typically converged within 4-5 iterations) is shown in Fig-

ure 5.65. The convergence curves for the mass and momentum are typical for

quadratic rates (slightly curved upwards), at the first 3-4 iterations, before level-

ing off, at the asymptotic limit, when the round-off errors become important. The

convergence rates for energy were slower, and leveling off earlier.

The dynamics of temperature, velocity, streamline fields, as well as melting

front positions are shown in Figures 5.66-5.68. For both Ra numbers, the melting

front advances slowly, until a steady-state position is achieved. In the case of low

Ra = 10
3
, a single vortex is established in the liquid pool. The boundary layer
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Fig. 5.65 : History of the non-linear convergence for the last five time steps of

the simulation with RDG
P2P3

on mesh 128×64 and Ra = 10
6
. CFLaco = 400,

CFLmat = 2, Focond = 1.6, Fovisc = 160.



5.10. NATURAL CONVECTION WITH PHASE CHANGE 149
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128   64 x 

Ra=10 
3 

P2P3 

Liquidus 

Solidus 

Fig. 5.66 : Dynamics of temperature field and melting front position, using

RDG
P2P3

on mesh 128×64. Ra = 10
3
.
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t=80 
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128   64 x 
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Liquidus 

Solidus 

Fig. 5.67 : Dynamics of velocity/streamline fields and melting front position, using

RDG
P2P3

on mesh 128×64. Ra = 10
3
.
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Melting front 

Fig. 5.68 : Dynamics of the velocity/streamline fields and melting front position,

using RDG
P2P3

on mesh 128×64. Ra = 10
6
.
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near the melting front is relatively thick. Thus, it is rather easy to get an ade-

quate solution with relatively course mesh and lower order spatial discretization,

see Figures 5.69 - 5.72 for mesh convergence with both RDG
P0P1

and RDG
P2P3

schemes. This is a “never-mind” case, when the utilization of the high-order space

discretization is not cost-effective.

It is very different for the highRa number case. ForRa = 10
6
, the established

vortical flow pattern is more complex, forming five distinct eddies in the liquid

pool. Also, the boundary layers and the “mushy” zone – are very thin. In Figures

5.73-5.75, we show the mesh convergence for the fourth-order accurate RDG
P2P3

scheme, on the sequence of meshes 32×16, 64×32 and 128×64. It is evident, that

even on the coarsest mesh, our method represents flow pattern adequately, with all

five vortices resolved (the upper-right corner vortex is actually broken into two,

due to extremely coarse in this corner). For the RDG
P2P3

, we would consider the

mesh 64 × 32 to be “good-enough”, based on these “viewgraph-norm” compar-

isons.

The mesh convergence for RDG
P0P1

is demonstrated in Figures 5.76-5.78. It

can be seen that the second-order discretization errors tend to suppress resolu-

tion of smaller vortical structures. Only with the mesh as high as 512 × 256 we

are getting a full resolution of five vortical structures. Comparing to RDG
P2P3

,

this requires ten times more degrees of freedom, which effectively corresponds to

significantly larger linear algebra matrices to invert, and significantly larger CFL

numbers involved (thus, stiffer underlying linear solver). In terms of CPU time,

we do not get ten-fold speed-up, because the RDG
P2P3

is more expensive per DoF,

than the RDG
P2P3

– but still a better (2-3 times) performance. It is instructive to

note here, that higher-order schemes allow to better utilize future trends in hard-

ware architecture, including GPU computing and threading, which would make

advantage of the RDG
P2P3

scheme even more evident.
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Fig. 5.69 : Mesh convergence of temperature field for RDG
P0P1

. Ra = 10
3
.
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Fig. 5.70 : Mesh convergence of velocity/streamline fields for RDG
P0P1

. Ra =

10
3
.
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Fig. 5.71 : Mesh convergence of temperature field for RDG
P2P3

. Ra = 10
3
.
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Fig. 5.72 : Mesh convergence of velocity/streamline fields for RDG
P2P3

. Ra =

10
3
.
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Fig. 5.73 : Mesh convergence of temperature field for RDG
P2P3

. Ra = 10
6
.
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Fig. 5.74 : Mesh convergence of velocity/streamline fields for RDG
P2P3

. Ra =

10
6
.
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Fig. 5.75 : Mesh convergence of velocity field and melting front position, for

RDG
P2P3

. Ra = 10
6
.
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Fig. 5.76 : Mesh convergence of velocity/streamline fields for RDG
P0P1

. Ra =

10
6
.
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Fig. 5.77 : Comparison of velocity/streamline fields for “converged” mesh.

RDG
P0P1

vs. RDG
P2P3

. Ra = 10
6
.
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Fig. 5.78 : Mesh convergence of velocity field and melting front position, for

RDG
P0P1

. Ra = 10
6
.
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Chapter 6

Concluding Remarks

I
N this study, we introduced Discontinuous Galerkin method based on the Least-

Squares reconstruction and orthogonal basis functions. The method is generally

a subclass of the Method of Mean Weighted Residuals (MWR), in which we solve

for degrees of freedom in a piecewise-polynomial solution representation, mini-

mizing residuals satisfying underlying governing equations. There are two main

technical contributions of the work - a) Tensor-product Legendre polynomials as

basis functions, combined with inverse Jacobian weighted test functions, ensur-

ing orthogonality of the mass matrix; and b) An ability of solving for primitive

variables, chosen on the base of better conditioning/solvability of the underlying

governing equations. These features enable robust combination of the RDG with

Newton-Krylov based fully-implicit solution procedure.

We have demonstrated method’s capability to produce highly accurate solu-

tions of difficult multiphysics problems on highly distorted unstructured grids.

The scope of complexity involve multiple time scale problems, with wide spread

of scales, including very fast (stiff) modes. In particular, we have shown all-

speed flow capabilities, when fully-compressible simulations are performed for

extremely small Mach numbers < 10−3, without explicit filtering of acoustic

modes on the problem formulation (governing equations) level. Also, we demon-

strated an ability to incorporate stiff material strength models within the frame-

work of seamless combination of fluid-solid multimaterial systems.

The future effort should be concentrated on two areas. First, on improvement

of preconditioning. In the present study, we compute approximate Jacobian ma-

trices, and utilize (incomplete) LU factorizations, as preconditioning techniques
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for the GMRES based linear steps in Newton iterations. This is rather expensive

in both memory requirements (for the Jacobian storage), and CPU time (for LU

factorizations involved). Instead, we are looking for to develop and implement the

Jacobian-free physics-based preconditioning strategy, in which operator-splitting

legacy algorithms can be utilized to keep Krylov subspace limited. Second, we

need to extend current modeling approach to work with multi-material interfaces.

Our current plan in this direction is to involve a combination of the level set and

volume tracking algorithms, to represent interfaces between (partially molten)

powder material and ambient gas.
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Appendix A

Tensor Calculus

S
ECOND rank tensors are often referred to simply as tensors. First rank tensors

are referred to as vectors, and zero rank tensors as scalars.

The summation convection. If the same index letter appears twice in a term,

summation with respect to that index is implied over the dimensions of the space.

This rule always applies whenever an index is repeated in a term, for e.g.:

A
kk

= Axx + Ayy + Azz

a
i
A

ji
= a

x
A

jx
+ a

y
A

jy
+ a

z
A

jz

A.1 Vectors

Given two Cartesian vectors a =
{
ax , ay , az

}T

and b =
{
bx , by , bz

}T

, the dot

product is defined as

a · b = a
x
b
x
+ a

y
b
y
+ a

z
b
z
= a

k
b
k

(A.1)

The dyadic product of two vectors is a tensor, denoted as [Ari]

ab = a⊗ b =





axbx axby axbz
aybx ayby aybz
a

z
b
x

a
z
b
y

a
z
b
z



 = a
k
b
l

(A.2)

Spatial derivatives are denoted as

∇ =

{
∂

∂x
,
∂

∂y
,
∂

∂z

}T

=
{
∂x , ∂y , ∂z

}T

= ∂
j

(A.3)
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Thus, the gradient of an arbitrary scalar ϕ is defined as

∇ϕ =

{
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

}T

=
{
∂xϕ, ∂yϕ, ∂zϕ

}T

= ∂
j
ϕ (A.4)

and, accordingly, dot product of a vector and a gradient of a scalar is

a · ∇ϕ = a
x

∂ϕ

∂x
+ a

y

∂ϕ

∂y
+ a

z

∂ϕ

∂z
(A.5)

Laplacian of an arbitrary scalar is defined as

∇ · ∇ϕ = ∇2

ϕ = ∆ϕ =
∂

2
ϕ

∂x
2 +

∂
2
ϕ

∂y
2 +

∂
2
ϕ

∂z
2 = ∂

2

k
ϕ (A.6)

Divergence of a vector is defined as

∇ · a =
∂ax

∂x
+
∂a

y

∂y
+
∂az

∂z
(A.7)

Gradient of an arbitrary vector is a tensor, defined as

∇a =










∂ax
∂x

∂ax
∂y

∂ax
∂z

∂ay
∂x

∂ay
∂y

∂ay
∂z

∂az
∂x

∂az
∂y

∂az
∂z










(A.8)

and its transpose:

∇a
T

=










∂ax
∂x

∂ay
∂x

∂ay
∂x

∂ax
∂y

∂ay
∂y

∂ay
∂y

∂ax
∂z

∂ay
∂z

∂ay
∂z










(A.9)

Scalar product of a vector and divergence of a vector is a vector:

a · ∇b =







ax · ∇bx
a

y
· ∇b

y

az · ∇bz






=







a
x

∂bx
∂x

+ a
y

∂bx
∂y

+ a
z

∂bx
∂z

a
x

∂by
∂x

+ a
y

∂by
∂y

+ a
z

∂by
∂z

ax

∂bz
∂x

+ ay

∂bz
∂y

+ az

∂bz
∂z







(A.10)
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Divergence of a dyadic product of two vectors is defined as

∇ · (ab) = ∇ · (a⊗ b) =







∂
∂x

(axbx) +
∂
∂y

(
axby

)
+ ∂

∂z
(axbz)

∂
∂x

(
aybx

)
+ ∂

∂y

(
ayby

)
+ ∂

∂z

(
aybz

)

∂
∂x

(azbx) +
∂
∂y

(
azby

)
+ ∂

∂z
(azbz)







(A.11)

A.2 Tensors

A component of a tensor is indicated by two indices, Thus, the i, j component of

a tensor A is written as A
ij

.

If A
ij
= A

ji
for all i and j, the tensor is said to be symmetric. If A

ij
= −A

ji

for all i and j, then it is antisymmetric. For an antisymmetric tensor, components

in which i and j have the same value (diagonal) are zero.

The transpose of a tensor A is a tensor denoted as A
T

, with components

A
T

ij
= A

ji

The trace of a tensor A is the scalar A
kk

, e.g.

trace (A) = A
xx

+ A
yy
+ A

zz

Addition/substraction of two tensors A and B is a tensor C:

A+ B = A
ij
+B

ij
= C

ij
= C (A.12)

Direct product of a scalar c and tensor A is a tensor:

cA = cA
ij
= C

ij
= C (A.13)

Inner product of two tensors A and B is a tensor C:

A · B = A
ij
B

kl
δ
jk
= A

ij
B

jl
= C

il
= C (A.14)

Double inner product of two tensors A and B is a scalar:

A : B = A
ij
B

kl
δ
jk
δ
il
= A

ij
B

jl
δ
il
= A

ij
B

ji
(A.15)
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Appendix B

Butcher Tableau for ESDIRK

I
N this appendix, we summarize coefficients for “Explicit, Singly Diagonal Im-

plicit Runge-Kutta” (ESDIRK) time discretization scheme.

ESDIRK3

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

0 0

3
5

2746238789719
10658868560708

− 640167445237
6845629431997

1767732205903
4055673282236

0

1 1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

br

1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

b̂r

2756265671327
12835298489170

−10771552573575
22201958757719

9247589265047
10645013368117

2193209047091
5459859503100

(B.1)
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ESDIRK4

0 0 0 0 0 0 0

1
2

1
4

1
4

0 0 0 0

83
250

8611
62500

− 1743
31250

1
4

0 0 0

31
50

5012029
34652500

− 654441
2922500

174375
388108

1
4

0 0

17
20

15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

0

1 82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

br

82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

b̂r

4586570599
29645900160

0 178811875
945068544

814220225
1159782912

− 3700637
11593932

61727
225920

(B.2)
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ESDIRK5

0 0 0 0 0 .

41

100

41

200

41

200
0 0 .

2935347310677

11292855782101

41

400

−567603406766

11931857230679

41

200
0 .

1426016391358

7196633302097

683785636431

9252920307686
0 −110385047103

1367015193373

41

200
.

92

100

3016520224154

10081342136671
0 30586259806659

12414158314087

−22760509404356

11113319521817
B

24

100

218866479029

1489978393911
0 638256894668

5436446318841

−1179710474555

5321154724896
.

3

5

1020004230633

5715676835656
0 25762820946817

25263940353407
− 2161375909145

9755907335909
.

1 −872700587467

9133579230613
0 0 22348218063261

9555858737531
.

b
r

−872700587467

9133579230613
0 0 22348218063261

9555858737531
.

B =







































0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

41

200
0 0 0

−60928119172

8023461067671

41

200
0 0

−211217309593

5846859502534

−4269925059573

7827059040749

41

200
0

−1143369518992

8141816002931

−39379526789629

19018526304540

32727382324388

42900044865799

41

200

−1143369518992

8141816002931

−39379526789629

19018526304540

32727382324388

42900044865799

41

200







































(B.3)
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Appendix C

Thermodynamics

T
He first law of thermodynamics [RP77, Atk94] can be stated as

dE = dQ+ dW (C.1)

where dE is the change in total energy of the system, dQ is the heat added to the

system,

dQ = TdS

and dW is the work done on the system. Hereafter, we denote thermodynamic

entropy by S. Simple substances are those for which the only important reversible

work mode is volume change,

dW = −PdV (C.2)

where V is the volume. With these, we can re-write eq.(C.1) as

du = Tds+
P

ρ2
dρ (C.3)

It is customary to express intensive thermodynamic variables in algebraic (or

tabular) forms, known as equations of state,

u = u (s, ρ) , or

h = h (s, ρ) , or

P = P (ρ, u)
etc.

(C.4)
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Using the calculus of functions of two variables,

du =
∂u

∂s

∣
∣
∣
∣
ρ

ds+
∂u

∂ρ

∣
∣
∣
∣
s

dρ (C.5)

From eq.(C.3) and (C.5),

T =
∂u

∂s

∣
∣
∣
∣
ρ

(C.6)

and

P = ρ2
∂u

∂ρ

∣
∣
∣
∣
s

(C.7)

where ps are coming from the equation of state (C.4).

Using the definition of enthalpy eq.(2.11), the first law of thermodynamics

eq.(C.1) can be written as

dh = Tds+ υdP (C.8)

where υ = 1
ρ
, which combined with

dh =
∂h

∂s

∣
∣
∣
∣
P

ds+
∂h

∂P

∣
∣
∣
∣
s

dP (C.9)

gives another usefull set of relationships:

T =
∂h

∂s

∣
∣
∣
∣
P

(C.10)

and

ρ =

(
∂h

∂P

∣
∣
∣
∣
s

)−1

(C.11)

For materials which do not allow phase transition (melting, freezing, evapora-

tion, condensation), or in single-state (solid, liquid or vapour) zones of complex

materials, pressure P and temperature T are always independent variables. This

allows for some simplifications. In particular, using the calculus of functions of
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two variables, for any three functions x, y and z, any two of which may be selected

as the independent pair,

∂x

∂y

∣
∣
∣
∣
z

∂y

∂z

∣
∣
∣
∣
x

∂z

∂x

∣
∣
∣
∣
y

= −1 (C.12)

This allows to compute important ps of independent variables, especially useful

for thermodynamical consistency of tabulated equations of state. For example,

• ∂P
∂T

∣
∣
υ

from υ = υ (P, T ), as

∂P

∂T

∣
∣
∣
∣
υ

∂T

∂υ

∣
∣
∣
∣
P

∂υ

∂P

∣
∣
∣
∣
T

= −1 =⇒ ∂P

∂T

∣
∣
∣
∣
υ

= −
∂υ
∂T

∣
∣
P

∂υ
∂P

∣
∣
T

(C.13)

• ∂P
∂u

∣
∣
ρ

from ρ = ρ (P, u):

∂P

∂u

∣
∣
∣
∣
ρ

= −
∂ρ

∂u

∣
∣
P

∂ρ

∂P

∣
∣
u

(C.14)

• ∂υ
∂T

∣
∣
P

from P = P (υ, T ):

∂υ

∂T

∣
∣
∣
∣
P

= −
∂P
∂T

∣
∣
υ

∂P
∂υ

∣
∣
T

(C.15)

C.1 Specific heats

Consider specific internal energy as a function of T and υ,

u = u (T, υ)

The difference in energy between any two infinitesimally close states is then

du =
∂u

∂T

∣
∣
∣
∣
υ

dT +
∂u

∂υ

∣
∣
∣
∣
T

dυ (C.16)

The slope of a line of constant υ on a (u− T ) thermodynamic plane is a function

of state, and called specific heat at constant volume1:

Cv ≡ ∂u

∂T

∣
∣
∣
∣
υ

(C.17)

1Sometimes called specific isochoric heat capacity.
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Using the calculus of functions of two variables2,

Cv =
1

∂T
∂u

∣
∣
P
−

∂T
∂P |

u

∂ρ
∂u |

P
∂ρ
∂P |

u

(C.21)

which can be used for tabulated equations of state.

Another specific heat is defined as

C
P
≡ ∂h

∂T

∣
∣
∣
∣
P

=
∂u

∂T

∣
∣
∣
∣
P

− P

ρ2
∂ρ

∂T

∣
∣
∣
∣
P

(C.22)

and called the specific heat at constant pressure3. Using the calculus of functions

2 In fact,

dρ = ∂ρ
∂P

∣
∣
∣
u

dP + ∂ρ
∂u

∣
∣
∣
P

du

dT = ∂T
∂P

∣
∣
u

dP + ∂T
∂u

∣
∣
P
du

dT = ∂T
∂ρ

∣
∣
∣
u

dρ + ∂T
∂u

∣
∣
ρ
du

Eliminating dT in the last two equations, plugging dρ from the first one, and collecting the terms

with dP on the left and with du on the right,

dP

[

∂T
∂P

∣
∣
u

− ∂T
∂ρ

∣
∣
∣
u

∂ρ
∂P

∣
∣
∣
u

]

= du

[

∂T
∂u

∣
∣
ρ
− ∂T

∂u

∣
∣
P
+ ∂T

∂ρ

∣
∣
∣
u

∂ρ
∂u

∣
∣
∣
P

]

(C.18)

Since the changes du and dP are independent, setting du = 0 leads to

∂T

∂ρ

∣
∣
∣
∣
u

=

∂T
∂P

∣
∣
u

∂ρ
∂P

∣
∣
∣
u

(C.19)

Similarly, setting dP = 0 leads to

∂T

∂u

∣
∣
∣
∣
ρ

=
∂T

∂u

∣
∣
∣
∣
P

− ∂T

∂ρ

∣
∣
∣
∣
u

∂ρ

∂u

∣
∣
∣
∣
P

(C.20)

which is inverse of equation (C.21).
3It is also sometimes called the heat capacity at constant pressure.
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of two variables4,

C
P
=

1− P
ρ2

∂ρ

∂u

∣
∣
P

∂T
∂u

∣
∣
P

(C.26)

Both C
P

and Cv constitute two of the most important thermodynamic deriva-

tive functions, and their values have been experimentally determined as functions

of the thermodynamic state for a tremendous number of simple compressible sub-

stances, [RP77, Atk94].

When specific heats are functions of both temperature and pressure, the mate-

rial is defined as “imperfect gas”. There are two important simplifications oftenly

used in engineering applications:

- Thermally perfect gas. Cv is a function of temperature only.

- Calorically perfect gas. Cv is constant.

4 In fact,

dρ = ∂ρ
∂P

∣
∣
∣
u

dP + ∂ρ
∂u

∣
∣
∣
P

du

dT = ∂T
∂P

∣
∣
u

dP + ∂T
∂u

∣
∣
P
du

dT = ∂T
∂ρ

∣
∣
∣
u

dρ + ∂T
∂P

∣
∣
ρ
dP

Eliminating dT in the last two equations, plugging dρ from the first one, and collecting the terms

with dP on the left and with du on the right,

dP

[

∂T
∂P

∣
∣
u

− ∂T
∂P

∣
∣
ρ
− ∂T

∂ρ

∣
∣
∣
P

∂ρ
∂P

∣
∣
∣
u

]

= du

[

∂ρ
∂u

∣
∣
∣
P

∂T
∂ρ

∣
∣
∣
P

− ∂T
∂u

∣
∣
P

]

(C.23)

Since the changes du and dP are independent, setting dP = 0 leads to

∂T

∂ρ

∣
∣
∣
∣
P

=

∂T
∂u

∣
∣
P

∂ρ
∂u

∣
∣
∣
P

(C.24)

Similarly, setting du = 0 leads to

∂T

∂P

∣
∣
∣
∣
ρ

=
∂T

∂P

∣
∣
∣
∣
u

− ∂T

∂u

∣
∣
∣
∣
P

∂ρ
∂P

∣
∣
∣
u(

∂ρ
∂u

∣
∣
∣
P

(C.25)

Combining eq.(C.24) and (C.22) leads to eq.(C.26).
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C.2 Compressibilities

Consider specific volume as a function of T and P ,

υ = υ (T, P )

The difference in specific volume between any two infinitesimally close states is

then

dυ =
∂υ

∂T

∣
∣
∣
∣
P

dT +
∂υ

∂P

∣
∣
∣
∣
T

dP

The slope ∂υ
∂T

∣
∣
P

represents the sensitivity of the specific volume to changes in

temperature at constant pressure, leading to the definition of the isobaric com-

pressibility:

β ≡ 1

υ

∂υ

∂T

∣
∣
∣
∣
P

= −1

ρ

∂ρ

∂T

∣
∣
∣
∣
P

(C.27)

Using eq.(C.33),

β = −1

ρ

∂ρ

∂u

∣
∣
P

∂T
∂u

∣
∣
P

(C.28)

Using eq.(C.15),

β = −1

ρ

∂P
∂T

∣
∣
ρ

∂P
∂ρ

∣
∣
∣
T

(C.29)

The coefficient of linear expansion used in elementary strength-of-materials

textbooks is

α =
1

3
β

The slope ∂υ
∂P

∣
∣
T

is a measure of the change in specific volume associated with a

change in pressure at constant temperature, defining the isothermal compressibil-

ity:

χ ≡ −1

υ

∂υ

∂P

∣
∣
∣
∣
T

=
1

ρ

∂ρ

∂P

∣
∣
∣
∣
T

(C.30)
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Young’s modulus of elasticity is proportional to χ. Using the calculus of functions

of two variables5,

χ =
1

ρ

[

∂ρ

∂P

∣
∣
∣
∣
u

−
∂ρ

∂u

∣
∣
P

∂T
∂P

∣
∣
u

(
∂T
∂u

∣
∣
P

]

(C.34)

It is also possible to demonstrate that

χ =
C

P

ρCvc
2

(C.35)

C.3 Speed of sound

The sound speed of materials is defined as

c (s) =

√

∂P

∂ρ

∣
∣
∣
∣
s

(C.36)

5 In fact,

dρ = ∂ρ
∂P

∣
∣
∣
T

dP + ∂ρ
∂T

∣
∣
∣
P

dT

dρ = ∂ρ
∂P

∣
∣
∣
u

dP + ∂ρ
∂u

∣
∣
∣
P

du

dT = ∂T
∂P

∣
∣
u

dP + ∂T
∂u

∣
∣
P
du

Eliminating dρ in the first two equations, plugging into that the last equation for dT , and collecting

terms for dP on the left and for du on the right,

dP

[

∂ρ
∂P

∣
∣
∣
T

− ∂ρ
∂P

∣
∣
∣
u

+ ∂ρ
∂T

∣
∣
∣
P

∂T
∂P

∣
∣
u

]

= du

[

∂ρ
∂u

∣
∣
∣
P

− ∂ρ
∂T

∣
∣
∣
P

∂T
∂u

∣
∣
P

]

(C.31)

Since the changes du and dP are independent, setting du = 0 leads to

∂ρ

∂P

∣
∣
∣
∣
T

=
∂ρ

∂P

∣
∣
∣
∣
u

− ∂ρ

∂u

∣
∣
∣
∣
P

∂T
∂P

∣
∣
u

∂T
∂u

∣
∣
P

(C.32)

Similarly, setting dP = 0 generates

∂ρ

∂T

∣
∣
∣
∣
P

=

∂ρ
∂u

∣
∣
∣
P

∂T
∂u

∣
∣
P

(C.33)

Combining eq.(C.32) with eq.(C.30) leads to eq.(C.34).
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It is also related to partial derivatives of the pressure [Atk94], ∂P
∂ρ

∣
∣
∣
u

and ∂P
∂u

∣
∣
ρ
:

c (ρ, u) =

√

∂P

∂ρ

∣
∣
∣
∣
u

+
P ∂P

∂u

∣
∣
ρ

ρ2
(C.37)

or

c (ρ, T ) =

√
√
√
√ ∂P

∂ρ

∣
∣
∣
∣
T

+
T
(

∂P
∂T

∣
∣
ρ

)2

Cvρ
2

(C.38)

Using eq.(C.14),

c (P, u) =

√
√
√
√ 1

∂ρ

∂P

∣
∣
u

(

1−
P ∂ρ

∂u

∣
∣
P

ρ2

)

(C.39)

C.4 Entropy

Specific entropy change ds is defined by

ds =
du

T
+
P

T
dυ (C.40)

and

ds =
dh

T
− υ

T
dP (C.41)

Treating T and υ as independent variables,

ds =
∂s

∂T

∣
∣
∣
∣
υ

dT +
∂s

∂υ

∣
∣
∣
∣
T

dυ (C.42)

Next, using Maxwell relations (see [MHDM11]):

∂T
∂υ

∣
∣
s

= − ∂P
∂s

∣
∣
υ

∂T
∂P

∣
∣
s

= ∂υ
∂s

∣
∣
P

∂P
∂T

∣
∣
υ

= ∂s
∂υ

∣
∣
T

∂υ
∂T

∣
∣
P

= − ∂s
∂P

∣
∣
T

(C.43)
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one can write:

ds =
∂s

∂T

∣
∣
∣
∣
υ

dT +
∂P

∂T

∣
∣
∣
∣
υ

dυ (C.44)

It can be shown that

∂s

∂T

∣
∣
∣
∣
υ

=
Cv

T
(C.45)

(see p.652 of [MHDM11]). Thus,

ds =
Cv

T
dT +

∂P

∂T

∣
∣
∣
∣
υ

dυ (C.46)

C.5 γ-law gas

Equation of state for an ideal or perfect gas is

P = ρRT (C.47)

where R = Ru

M
is the specific gas constant, with the universal gas constant Ru ≈

8.31451 J
mol·K and M is the molecular weight of the gas.

One of the important features of a perfect gas is that its internal energy depends

only upon its temperature. Thus, eq.(C.16) reduces to:

du = Cv(T )dT (C.48)

and Cv depends only upon T . From eq.(2.11), the enthalpy h also depends only

on temperature, leading to

dh = C
P
(T )dT (C.49)

Next, one can easily see that

dh = C
P
(T )dT = du+ d (Pυ) = CvdT +RdT

leading to

R = Cp − Cv
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Now, we can introduce γ as the ratio of specific heats [Atk94]:

γ ≡ C
P

Cv

(C.50)

The next level of assumption is stating that C
v

is independent of temperature,

i.e. the assumption of calorically perfect gas, leading to the following relation of

the specific internal energy and temperature:

u(T ) = u0 + C
v
(T − T0) (C.51)

where u0 and T0 are some reference constants.

With this, we can write “γ-law” equation of state as

P (ρ, u) = ρ(γ − 1) (u− u0 + CvT0) (C.52)

and important thermodynamic properties are defined as

Cv = const Specific heat at constant volume

C
P

= γCv Specific heat at constant pressure

β(T ) = 1
T

Isobaric compressibility

χ(P ) = 1
P

Isothermal compressibility

c (P, ρ) =
√

γP

ρ
Speed of sound

∂P
∂u

∣
∣
ρ

= ρ(γ − 1)

∂P
∂ρ

∣
∣
∣
u

= P
ρ

(C.53)

Entropy is defined integrating eqs.(C.40) or (C.41), as follows. Since

du = CvdT

dh = CpdT = γCvdT

and

Pυ = Cv (γ − 1) T
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then

ds =
C

v
dT

T
+ Cv (γ − 1)

dυ

υ

and

ds =
CvγdT

T
− C

v
(γ − 1)

dP

P

Introducing “reference” entropy s0 = s (T0 , ρ0) = s (T0 , P0), specific entropy of

γ-gas can be defined as:

s (T, v) = s0 +
T∫

T0

Cv

T
dT +

υ∫

υ0

Cv (γ−1)
υ

dυ

= s
0
+ C

v

(

ln T
T0

+ (γ − 1) ln υ
υ0

) (C.54)

and, similarly:

s (T, P ) = s0 + Cv

(

γ ln T
T0

− (γ − 1) ln P
P0

)

(C.55)

C.6 2-parameter fluid

The following equation of state is used for nearly-incompressible flows:

P (ρ) = P0 + A
ρ− ρ0

ρ0

(C.56)

where P0 and ρ0 are reference pressure and density, respectively. The speed of

sound is defined by const A, as

c =

√

A

ρ0

(C.57)

The fluid is assumed to be calorically perfect, eq.(C.51). Since pressure and den-

sity are not functions of energy,

Cv =
∂u

∂T

∣
∣
∣
∣
ρ

=
∂h

∂T

∣
∣
∣
∣
P

= CP (C.58)

and γ = 1.



This Page is Intentionally Left Blank



Bibliography

[ABC00] Ann S. Almgren, John B. Bell, and William Y. Crutchfield. Approx-

imate projection methods: Part i. inviscid analysis. SIAM Journal

on Scientific Computing, 22(4):1139–1159, 2000.

[ABCH93] Ann S. Almgren, John B. Bell, Phillip Colella, and Louis H Howell.

An adaptive projection method for the incompressible euler equa-

tions. In Eleventh AIAA Computational Fluid Dynamics Confer-

ence, pages 530–539. AIAA, 1993.

[ABS96] Ann S. Almgren, John B. Bell, and William G. Szymcyzk. A numer-

ical method for the incompressible navier-stokes equations based on

an approximate projection. SIAM Journal for Scientific Computing,

17(2):358–369, March 1996.

[ale13] ALE3D Web page, 2013. https://wci.llnl.gov/simulation/computer-

codes/ale3d.

[ALE14] Team ALE3D. ALE3D users manual, An Arbitrary La-

grangian/Eulerian 2D and 3D Code System. Technical Report

LLNL-SM-650174 - Version 4.22.x, Lawrence Livermore National

Laboratory, January 31 2014.

[Ari] R. Aris. Vectors, Tensors, and the Basic Equations of Fluid Mechan-

ics. Dover Publications, Inc., New York.

[Atk94] P. Atkins. Physical Chemistry. Freeman, New York, 5th edition,

1994.

[BBE+04] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp,

Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,

Barry F. Smith, and Hong Zhang. PETSc users manual. Technical

188



BIBLIOGRAPHY 189

Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory,

2004.

[BBG+01] Satish Balay, Kris Buschelman, William D. Gropp, Di-

nesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,

Barry F. Smith, and Hong Zhang. PETSc Web page, 2001.

http://www.mcs.anl.gov/petsc.

[BCG89] John B. Bell, Philip Colella, and Harland M. Glaz. A second-order

projection method for the incompressible navier-stokes equations.

Journal of Computational Physics, 85:257–283, 1989.

[BCVK02] H. Bijl, M.H. Carpenter, V.N. Vatsa, and C.A. Kennedy. Implicit

time integration schemes for the unsteady compressible Navier-

Stokes equations: Laminar flow. Journal of Computational Physics,

179:313–329, 2002.

[BGMS97] Satish Balay, William D. Gropp, Lois Curfman McInnes, and

Barry F. Smith. Efficient management of parallelism in object ori-

ented numerical software libraries. In E. Arge, A. M. Bruaset, and

H. P. Langtangen, editors, Modern Software Tools in Scientific Com-

puting, pages 163–202. Birkhäuser Press, 1997.
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